21-301 Combinatorics Homework 6 Due: Monday, October 26

- 1. Suppose that in a town of *n* citizens, clubs C_1, C_2, \ldots, C_m must satisfy (i) $|C_i|$ is even for $i = 1, 2, \ldots, m$ and (ii) $|C_i \cap C_j|$ is odd for $1 \le i < j \le m$. Show that $m \le n$. (Hint: Consider the cases *n* odd and *n* even separately. In the *n* even case consider the matrix $M = AA^T$ where *A* is made up from the incidence vectors of the columns of C_1, C_2, \ldots, C_m .)
- 2. Let $A_1, A_2, \ldots, A_m \subseteq [n]$ be such that for $1 \leq i < j \leq m$, $d_{i,j} = |(A_i \setminus A_j) \cup (A_j \setminus A_i)|$ takes one of two values. Show that $m \leq (n+1)(n+4)/2$.
- 3. Each edge of K_n appears an odd number of times as an edge in the collection G_1, G_2, \ldots, G_m of bipartite subgraphs of K_n . Show that $m \ge (n-1)/2$. [Hint: Let A_k, B_k, M_k, S be as in the notes on Linear Algebraic Methods and consider the $2n \times n$ matrix $T = \begin{bmatrix} s \\ s^T \\ 1^T \end{bmatrix}$.]