21-301 Combinatorics Homework 4

Due: Wednesday, October 7

1. Subsets $A_i, B_i \subseteq [n], i = 1, 2, ..., m$ satisfy $A_i \cap B_i = \emptyset$ for all i and $A_i \cap B_j \neq \emptyset$ for all $i \neq j$. Show that

$$\sum_{i=1}^{m} \frac{1}{\binom{|A_i|+|B_i|}{|A_i|}} \le 1.$$

- 2. Let A_1, \ldots, A_n and B_1, \ldots, B_n be distinct finite subsets of $\{1, 2, 3, \ldots, \}$ such that
 - for every $i, A_i \cap B_i = \emptyset$, and
 - for every $i \neq j$, $(A_i \cap B_j) \cup (A_j \cap B_i) \neq \emptyset$.

Prove that for every real number $0 \le p \le 1$.

$$\sum_{i=1}^{n} p^{|A_i|} (1-p)^{|B_i|} \le 1. \tag{1}$$

(Hint: Define disjoint events \mathcal{E}_i such that the LHS of (1) is $\sum_i \Pr(\mathcal{E}_i)$.)

3. Let x_1, x_2, \ldots, x_n be real numbers such that $x_i \geq 1$ for $i = 1, 2, \ldots, n$. Let J be any open interval of width 2. Show that of the 2^n sums $\sum_{i=1}^n \epsilon_i x_i$, $(\epsilon_i = \pm 1)$, at most $\binom{n}{\lfloor n/2 \rfloor}$ lie in J.

(Hint: use Sperner's lemma.)