21-301 Combinatorics Homework 3 Due: Wednesday, September 30

- 1. Let $X = \{x_1, x_2, \ldots, x_n\}$ be a set of **variables**. A literal is a variable x_i or its negation \bar{x}_i . A clause C is a set of literals. Let $\mathcal{C} = \{C_1, C_2, \ldots, C_m\}$ be a set of clauses, all of size k. A variable x_i appears in a clause C_j if $\{x_i, \bar{x}_i\} \cap C_j \neq \emptyset$. An assignment of truth values is a map $\sigma : X \to \{0, 1\}$. We extend σ to the set of literals L by putting $\sigma(\bar{x}_i) = 1 \sigma(x_i)$ for $i = 1, 2, \ldots, n$. We say that σ satisfies \mathcal{C} if every clause cojntains at least one literal y such that $\sigma(y) = 1$. Show that if no variable appears in more than $2^{k-2}/k$ clauses, then there is a least one satisfying assignment.
- 2. Let G = (V, E) be a graph and suppose each $v \in V$ is associated with a set S(v) of colors of size at least 10*d*, where $d \ge 1$. Suppose that for every v and $c \in S(v)$ there are at most *d* neighbors *u* of *v* such that *c* lies in S(u). Prove that there is a proper coloring of *G* assigning to each vertex *v* a color from its class S(v). (By proper we mean that adjacent vertices get distinct colors.)
- 3. Suppose that $n \leq 2^{k-3}/k$. Show that [n] can be partitioned into two sets B, W such that neither B nor W contains a k-term arithmetic progression i.e. a set $\{a + ib : i = 0, 1, \ldots, k 1\}.$