Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2015: Test 4

Name: \qquad

Problem	Points	Score
1	40	
2	40	
3	20	
Total	100	

Q1: (40pts)

How many ways are there of k-coloring the squares of the above picture if the group acting is e_{0}, e_{2}, p, q where e_{j} is rotation by $2 \pi j / 4$ and p, q are horizontal and vertical reflections.
(All small squares are meant to be of the same size here).
Solution

$$
\begin{array}{ccccc}
g & e_{0} & e_{2} & p & q \\
|\operatorname{Fix}(g)| & k^{17} & k^{9} & k^{12} & k^{12}
\end{array}
$$

So the total number of colorings is

$$
\frac{k^{17}+k^{9}+k^{12}+k^{12}}{4}
$$

Q2: (40pts)

Consider the following take-away game: There is a pile of n chips. A move consists of removing 1 or 4 chips. Determine the Sprague-Grundy numbers $g(n)$ for $n \geq 0$ and prove that they are what you claim.
Solution: After looking at the first few numbers $0,1,0,1,2,0,1,0,1,2, \ldots$ one sees that

$$
g(n)= \begin{cases}0 & n=0,2 \quad \bmod 5 \\ 1 & n=1,3 \quad \bmod 5 \\ 2 & n=4 \quad \bmod 5\end{cases}
$$

We verify this by induction. It is true for $n \leq 10$ by inspection. For $n>10$ we have that if $n=5 m+s$ then
$g(n)=\operatorname{mex}\{g(n-1), g(n-4)\}=\operatorname{mex}\{g(5(m-1)+s+4), g(5(m-1)+s+1)\}$
So, by induction

$$
g(n)= \begin{cases}\operatorname{mex}\{g(5(m-1)+4), g(5(m-1)+1)\}=\operatorname{mex}\{2,1\}=0 & s=0 \\ \operatorname{mex}\{g(5 m), g(5(m-1)+2)\}=\operatorname{mex}\{0,0\}=1 & s=1 \\ \operatorname{mex}\{g(5 m+1), g(5(m-1)+3)\}=\operatorname{mex}\{1,1\}=0 & s=2 \\ \operatorname{mex}\{g(5 m+2), g(5(m-1)+4)\}=\operatorname{mex}\{0,2\}=1 & s=3 \\ \operatorname{mex}\{g(5 m+3), g(5 m)\}=\operatorname{mex}\{0,1\}=2 & s=4\end{cases}
$$

The result follows by induction.

Q3: (20pts)

In the game Split Nim a player removes chips from a non-empty pile and then if desired, has the further option of splitting the reduced pile into two non-empty piles (if the reduced pile has more than one chip). Show that Split Nim has the same N and P positions as ordinary Nim.
Solution: We prove this by induction on the total number t of chips. $t=0$ is a P position in both games.
Now suppose that $t>0$ and the position is an N position for Nim . If the player uses regular Nim strategy then the resulting position is a P position for Nim and by induction this is a P position for Split Nim.
Suppose then that $t>0$ and the position is a P position for Nim. Suppose that the pile sizes are $p_{1}, p_{2}, \ldots, p_{k}$. Suppose that the player first removes chips to leave p_{1}^{\prime} chips in the first pile. We know that $p_{1}^{\prime} \oplus p_{2} \oplus \cdots \oplus p_{k} \neq 0$ is an N position for Split Nim by induction.
So, suppose that the player now splits the first pile into two piles of size a, b. We will argue that $a \oplus b \oplus p_{2} \oplus \cdots \oplus p_{k} \neq 0$. This is an N position for Nim and it will be an N position for Split Nim by induction. Suppose to the contrary that $a \oplus b \oplus p_{2} \oplus \cdots \oplus p_{k}=0$. We will argue that $c=a \oplus b \leq a+b$. It follows that the previous position was in fact an N position for Nim, since the player could have removed $p_{1}-c$ chips and left a P position.
But if $a=\sum_{i} a_{i} 2^{i}$ and $b=\sum_{i} b_{i} 2^{i}$ then

$$
a+b-(a \oplus b)=\sum_{i}\left(a_{i}+b_{i}-\left(a_{i} \oplus b_{i}\right)\right) 2^{i} \geq 0
$$

