Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2015: Test 3

Name:

Andrew ID: \qquad

Write your name and Andrew ID on every page.

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

The sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ satisfies the following: $a_{0}=1, a_{1}=4$ and

$$
a_{n}-4 a_{n-1}+4 a_{n-2}=0
$$

for $n \geq 2$.
Determine the generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and hence find a_{n}. Solution

$$
\begin{aligned}
0 & =\sum_{n=2}^{\infty}\left(a_{n}-4 a_{n-1}+4 a_{n-2}\right) x^{n} \\
& =(a(x)-1-4 x)-4 x(a(x)-1)+4 x^{2} a(x) \\
& =a(x)\left(1-4 x+4 x^{2}\right)-1
\end{aligned}
$$

So

$$
\begin{aligned}
a(x) & =\frac{1}{1-4 x+4 x^{2}} \\
& =\frac{1}{(1-2 x)^{2}} \\
& =\sum_{n=0}^{\infty}(n+1) 2^{n} x^{n} .
\end{aligned}
$$

Q2: (33pts)

Consider the following take-away game: There is a pile of n chips. A move consists of removing 2 or 3 chips. Determine the Sprague-Grundy numbers $g(n)$ for $n \geq 0$ and prove that they are what you claim.
Solution: After looking at the first few numbers $0,0,1,1,2,0,0,1,1,2, \ldots$ one sees that

$$
g(n)= \begin{cases}0 & n=0,1 \quad \bmod 5 \\ 1 & n=2,3 \quad \bmod 5 \\ 2 & n=4 \quad \bmod 5\end{cases}
$$

We verify this by induction. It is true for $n \leq 10$ by inspection. For $n>10$ we have that if $n=5 m+s$ then
$g(n)=\operatorname{mex}\{g(n-3), g(n-2)\}=\operatorname{mex}\{g(5(m-1)+s+2), g(5(m-1)+s+3)\}$
So, by induction

$$
g(n)= \begin{cases}\operatorname{mex}\{g(5(m-1)+2), g(5(m-1)+3)\}=\operatorname{mex}\{1,1\}=0 & s=0 \\ \operatorname{mex}\{g(5(m-1)+3), g(5(m-1)+4)\}=\operatorname{mex}\{1,2\}=0 & s=1 \\ \operatorname{mex}\{g(5(m-1)+4), g(5 m)\}=\operatorname{mex}\{2,0\}=1 & s=2 \\ \operatorname{mex}\{g(5 m), g(5 m+1)\}=\operatorname{mex}\{0,0\}=1 & s=3 \\ \operatorname{mex}\{g(5 m+1), g(5 m+2)\}=\operatorname{mex}\{0,1\}=2 & s=4\end{cases}
$$

The result follows by induction.

Q3: (34pts)
Supose that there are m red clubs $R_{1}, R_{2}, \ldots, R_{m}$ and m blue clubs $B_{1}, B_{2}, \ldots, B_{m}$ in a town of n citizens. Assume that the clubs satisfy the following rules:

- $\left|R_{i} \cap B_{i}\right|$ is odd for every i;
- $\left|R_{i} \cap B_{j}\right|$ is even for every $i \neq j$.

Prove that $m \leq n$.
Solution: Let $\mathbf{r}_{i}, \mathbf{b}_{i}$ denote the characteristic vectors over the field \mathbb{F}_{2} of $R_{i}, B_{i} i=1,2, \ldots, m$. We show that these vectors are linearly independent. Suppose for example that

$$
c_{1} \mathbf{r}_{1}+c_{2} \mathbf{r}_{2}+\cdots+c_{m} \mathbf{r}_{m}=0
$$

Taking the inner product with \mathbf{b}_{j}, we obtain

$$
0=\mathbf{b}_{j} \cdot \sum_{i=1}^{m} c_{i} \mathbf{r}_{i}=\sum_{i=1}^{m} c_{i} \mathbf{r}_{i} . \mathbf{b}_{j}=c_{j} .
$$

It follows that $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{m}$ are linearly independent and so $m \leq n$.

