21-301 Combinatorics Homework 8 Due: Monday, November 19

1. In a take-away game, the set S of the possible numbers of chips to remove is finite. Show that the Grundy numbers g satisfy $g(n) \leq |S|$ where n is the number of chips remaining.

Solution: Observe that for any finite set A, $mex(A) \leq |A|$ since mex(A) > |A| implies that $A \subseteq \{0, 1, 2, ..., |A|\}$ which is obviously impossible. In the take-away game g(n) is the mex of a set of size at most |S| and the result follows.

2. Consider the following take-away game: In the first move you are not allowed to take the whole pile. After that, if a player removes x chips, then the next player can remove up to $\lfloor 5x/4 \rfloor$ chips. Determine the P positions.

Solution: The *P*-positions, $\{H_1, H_2, \ldots,\}$ satisfy the recurrence

$$H_{j+1} = H_j + H_k$$
 where $k = \min_{0 \le \ell \le j} \{\ell : H_j \le \lfloor 5H_\ell/4 \rfloor\}.$ (1)

The first 8 values are given by

We can see that $H_j = 2^j$, but we must prove this by induction. But this follows from

 $\lfloor 5 \times 2^{j-1}/4 \rfloor < 2^j$

which implies that k = j in (1).

- 3. Find the set of P-positions for the take-away games with subtraction sets
 - (a) $S = \{1, 3, 7\}.$ (b) $S = \{1, 4, 6\}.$

Suppose now that there are two piles and the rules for each pile are as above. Now find the P positions for the two pile game.

Solution:

(a) The first few numbers are

It is apparent that $g_1(j) = j \mod 2$ and this follows by an easy induction: If j is even then $j - x, x \in S$ is odd and if j is odd then $j - x, x \in S$ is even.

(b) The first few numbers are

 $j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 g_2(j) 0 1 0 1 2 0 1 0 1 2 0 1 0 1 2$

So, we see that the pattern 0 1 0 1 2 repeats itself. Again, induction can be used to verify that this continues indefinitely.

(c) The *P*-positions are those j, k for which $g_1(j) \oplus g_2(k) = 0$. Thus

 $P = \{(j,k) : (k \mod 10 \le 3) \text{ and } (j \mod 2 = k \mod 10)\}.$