21-301 Combinatorics Homework 6 Due: Monday, November 5

1. Let G be a bipartite graph with bipartition A, B where |A| = |B| = n. Let m be the number of edges of G. Show that if $r \ge 2$ and

$$n\binom{m/n}{2} > (r-1)\binom{n}{2} \tag{1}$$

then G contains a copy of $K_{2,r}$. Here $K_{2,r}$ is a bipartite graph with vertex set X, Y where |X| = 2, |Y| = r and edge set $X \times Y$.

Solution: A vertex $b \in B$ is the common neighbor of $\binom{d(b)}{2}$ pairs of vertices in A, where d(.) denotes degree. If

$$\sum_{b \in B} \binom{d(b)}{2} > r - 1 \binom{n}{2} \tag{2}$$

then there is a pair of vertices $a_1, a_2 \in A$ that are the common neighbor of r vertices in B. This implies that G contains a copy of $K_{2,r}$. The LHS of (1) is a lower bound on the LHS of (2).

2. Use the pigeon-hole principle to show that for every integer $k \ge 1$ and prime $p \ne 2, 5$ there exists a power of p that ends with $000 \cdots 0001$ (k 0's).

Solution: If we consider the infinite sequence $u_{\ell} = p^{\ell} \mod 10^{k+1}$ for $\ell = 1, 2, \ldots$, then by the PHP there exist m < n such that $u_m = u_n$, In which case,

$$p^{n} - p^{m} = 10^{k+1}s$$
 or $p^{n-m}(p^{m} - 1) = 10^{k+1}s$

for some positive integer s.

Now p and 10 are co-prime and therefore $p^m - 1 = 10^{k+1}s'$ for some positive integer s', and this implies the result.

3. Suppose we 2-color the edges of K_6 Red and Blue. Show that there are at least two monochromatic triangles.

Solution: Assume w.l.o.g. that triangle (1, 2, 3) is Red and that (4, 5, 6) is not Red and in particular that edge (4, 5) is Blue. If x = 4, 5 or 6 then there can be at most one Red edge joining x to 1, 2, 3, else we get a Red triangle. So we can assume that there are two Blue edges joining each of 4, 5 to 1, 2, 3. So there must be $x \in \{1, 2, 3\}$ such that both (x, 4) and (x, 5) are Blue. But then triangle (x, 4, 5) is Blue.