
Homework 4

Due Wednesday, October 10th,

1. In the kingdom of Far Far Away there are coins of values 1, 2 and 3 dollars. In how
many ways can the people of Far Far Away change n dollars?
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Answer: The number of ways is the same as the number of solutions for x1+x2+x3 = n

where xi ≡ 0 mod i. Using the scheme discussed in class we may write the generating
function
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Solving six linear equations with six variables we get that the generating function is
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Using the generalized binomial theorem (and the hint) we get that the coefficient of
xn is
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2. Assume you are given n labeled bills of value 1 dollar, m labeled bills of value 2 dollars
and p labeled bills of value 3 dollars. Write the generating function for the number of
ways in which you can change N dollars given these labeled bills. You do not have to
write the generating function as a power series.

Answer: Here every bill is considered different, so we take a different variable for every
bill. Each of these variables has two values — one when we use the corresponding bill
and one when we do not. Hence the generating function for the problem is

(1 + x)n(1 + x2)m(1 + x3)p
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3. Let B(n) be the number of ways in which one can put n labeled balls into unlabeled
sacks. For instance balls {1, 2, 3} could be split in five ways:

{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, {{1, 2, 3}}.

Find a recursion for B(n). You do not need to solve the recursion.

Answer: Let k be the number of balls that are in the same sack as the n+ 1’st ball.
There are
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choices for the balls with n+1, and B(n−k) ways to put the other balls
in sacks. All in all we get
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Finally, there is one empty set, so B(0) = 1.
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