Homework 3 solutions

1. Label the couples 1, 2, ..., n. Let A_S be the set of all configurations in which the couples in set S sit in front of each other. There are $\binom{n}{|S|}$ possible seats for these couples. Also we have $2^{|S|}$ ways to sit the males and females on the two benches, and another |S|! to choose which couple sits where. There are (2n-2|S|)! ways to seat the remaining people. So $|A_S| = \binom{n}{|S|} 2^{|S|} (2n - 2|S|)!$ So, by the inclusion exclusion principle we get:

$$\left|\bigcap \overline{A_i}\right| = \sum_{k=0}^n \binom{n}{k}^2 2^k k! (2n-2k)!.$$

2. (a) Let a_n be the number of strings made of zeros and ones with no two consecutive ones. If a_n ends in a 0, we have a_{n-1} possible strings. If a_n ends in a 1, it must end in a 01, so we have a_{n-2} possible strings. So,

$$a_n = a_{n-1} + a_{n-2}.$$

There is one empty velid sequence, two valid sequences of length 1 and three of length 2.

Therefore $a_n = F_{n+1}$, where F_n is the *n*'th Fibonacci number.

- (b) Let $\{a_n\}$ be a string of length n that satisfies the condition in the problem. Define $\{b_{n-1}\}$ as follows: $b_i = 1$ iff $a_i = a_{i+1}$ and 0 otherwise. The string $\{b_{n-1}\}$ has no two consecutive ones. From (a) above, there are F_n strings of the defined type. For each string b_{n-1} there are 2 strings a_n . So, the answer is $2F_n$.
- 3. Let $F(x) = \sum a_n x^n$. Then

$$F(x) - 2 - 10x = 6x(F(x) - 2) + 7x^{2}F(x),$$

$$F(x) = \frac{2 - 2x}{1 - 6x - 7x^{2}},$$

$$F(x) = \frac{3/2}{1 - 7x} + \frac{1/2}{1 + x}.$$

$$a_{n} = \frac{3}{2}7^{n} + \frac{1}{2}(-1)^{n}.$$

So

$$=\frac{3}{2}7^n + \frac{1}{2}(-1)$$