21-301 Combinatorics Homework 8 Due: Monday, November 14

1. Given any sequence of n integers, positive or negative, not necessarily all different, show that some consecutive subsequence has the property that the sum of the members of the subsequence is a multiple of n.

Solution: Let the sequence be x_1, x_2, \ldots, x_n and let $s_i = x_1 + \cdots + x_i$ mod n for $i = 1, 2, \ldots, n$. If there exists i with $s_i = 0$ then n divides $x_1 + \cdots + x_i$. Otherwise, s_1, s_2, \ldots, s_n all take values in [n - 1]. By the pigeon-hole principle, there exist i < j such that $s_i = s_j$ and then n divides $x_{i+1} + \cdots + x_j$.

2. Suppose that $a_1, a_2, \ldots, a_n \in [n]$ and $b_1, b_2, \ldots, b_n \in [n]$. An interval I is a set of the form $\{i, i + 1, \ldots, j\}$. Let $a_I = a_i + a_{i+1} + \cdots + a_j$ and $b_I = b_i + b_{i+1} + \cdots + b_j$. Show that there exist intervals I, J such that $a_I = b_J$.

Hint: Assume that $\sum_{i=1}^{n} a_i \ge \sum_{i=1}^{n} b_i$. Then show that for each k there exists j and $R_k \in [0, n-1]$ such that $\sum_{s=1}^{j} a_s = \sum_{t=1}^{k} b_t + R_k$.

Solution: Now, for any k it is always possible to express $\sum_{i=1}^{k} b_i$ as $\sum_{i=1}^{k} b_i = \sum_{i=1}^{j} a_i + R_k \ R_k \in [0, n-1]$ for some $j = j(k) \in [0, n]$. Indeed, either $\sum_{i=1}^{k} b_i < a_1$ and then we can take j = 1 and directly see that $R_k = a_1 - \sum_{i=1}^{k} b_i \in [0, n-1]$. Otherwise, take the largest j such that $S_k = \sum_{i=1}^{k} b_i - \sum_{i=1}^{j} a_i \ge 0$. If $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$ then there is nothing to prove and so we assume that $\sum_{i=1}^{n} a_i > \sum_{i=1}^{n} b_i$. This implies that j < n. If $S_k \ge n$ then $S_{k+1} \ge 0$, contradiction.

Consider the set of values R_k , for $k \in [1, n]$. If $R_k = 0$, for some k then we are done since $\sum_{i=1}^k b_i = \sum_{i=1}^{j(k)} a_i$. If not, there are only n-1 possible values for the n quantities R_1, \ldots, R_n and so there exist $k_1 < k_2$ such that $R_{k_1} = R_{k_2}$. But then

$$\sum_{i=1}^{k_1} b_i - \sum_{i=1}^{j(k_1)} a_i = R_{k_1} = R_{k_2} = \sum_{i=1}^{k_2} b_i - \sum_{i=1}^{j(k_2)} a_i$$

and therefore,

$$\sum_{i=j_1}^{k_2} b_i = \sum_{i=j(k_1)}^{j(k_2)} a_i.$$

3. Prove that if $n \geq R(2k, 2k)$ and if we 2-color the edges of $K_{n,n}$ then there is a mono-chromatic copy of $K_{k,k}$.

Solution: Given a coloring σ of $K_{n,n}$ we construct a coloring τ of the edges of K_n as follows. If i < j then we give the edge (i, j) of K_n the same color that is given to edge (i, j) under σ .

Since $n \geq R(2k, 2k)$ we see that K_n contains a mono-colored copy of K_{2k} . If the set of vertices of this copy is S, divide S into two parts S_1, S_2 of size k where max $S_1 < \min S_2$. It follows that the bipartite sub-graph of $K_{n,n}$ defined by S_1, S_2 is mono-colored under σ .