21-301 Combinatorics Homework 7 Due: Monday, November 7

1. Let $m = \lfloor n/2 \rfloor$. Describe a family \mathcal{A} of size $2^{n-1} + \binom{n-1}{m-1}$ that has the following property: If $A_1, A_2 \in \mathcal{A}$ are disjoint then $A_1 \cup A_2 = [n]$.

Solution: If n = 2m + 1 is odd, let $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ where $\mathcal{A}_1 = \{A \subseteq [n] : |A| \ge m + 1\}$ and $\mathcal{A}_2 = \{A \subseteq [n] : |A| = m, A \ni 1\}$. Here $|\mathcal{A}_1| = 2^{n-1}$, because if we partition the subsets of [n] into 2^{n-1} pairs, a set and its complement, then the larger of the two sets is in \mathcal{A}_1 . Clearly $|\mathcal{A}_2| = \binom{n-1}{m-1}$. Both \mathcal{A}_1 and \mathcal{A}_2 are intersecting families and if $A \in \mathcal{A}_1, B \in \mathcal{A}_2$ and $A \cap B = \emptyset$ then we have |B| = m and $|A| \ge m + 1$ and so A, Bmust be complementary.

If
$$n = 2m$$
 is even then let $\mathcal{A} = \{A \subseteq [n] : |A| \ge m\}$. Now

$$|\mathcal{A}| = |\mathcal{A}_1| + \binom{n}{m} = |\mathcal{A}_1| + \frac{1}{2}\binom{n}{m} + \frac{1}{2}\binom{n}{m} = 2^{n-1} + \frac{1}{2}\binom{n}{m} = 2^{n-1} + \binom{n-1}{m-1}.$$

Here, $|\mathcal{A}_1| + \frac{1}{2} {n \choose m} = 2^{n-1}$ because we can obtain this number of sets by taking one set from each pair of complementary sets. Each $A \in \mathcal{A}_1$ intersects all sets of size m or more and two sets of size m fail to intersect only when they are complementary.

- 2. Let A_1, \ldots, A_n and B_1, \ldots, B_n be distinct finite subsets of $\{1, 2, 3, \ldots, \}$ such that
 - for every $i, A_i \cap B_i = \emptyset$, and
 - for every $i \neq j$, $(A_i \cap B_j) \cup (A_j \cap B_i) \neq \emptyset$.

Prove that for every real number $0 \le p \le 1$.

$$\sum_{i=1}^{n} p^{|A_i|} (1-p)^{|B_i|} \le 1.$$
(1)

(Hint: Define disjoint events \mathcal{E}_i such that the LHS of (1) is $\sum_i \Pr(\mathcal{E}_i)$.)

Solution: Choose a random subset X by including each integer with probability p. Then let

$$\mathcal{E} = \{A_i \subseteq X \text{ and } B_i \cap X = \emptyset\}.$$

Then

$$\Pr(\mathcal{E}_i) = p^{|A_i|} (1-p)^{|B_i|}$$

and $\mathcal{E}_i, \mathcal{E}_j$ are disjoint for $i \neq j$ since for example $A_i \subseteq X$ and $A_i \cap B_j \neq \emptyset$ implies that $B_j \cap X \neq \emptyset$.

3. Let x_1, x_2, \ldots, x_n be real numbers such that $x_i \ge 1$ for $i = 1, 2, \ldots, n$. Let J be any open interval of width 2. Show that of the 2^n sums $\sum_{i=1}^n \epsilon_i x_i$, $(\epsilon_i = \pm 1)$, at most $\binom{n}{\lfloor n/2 \rfloor}$ lie in J.

(Hint: use Sperner's lemma.)

Solution: For $A \subseteq [n]$ let $x_A = \sum_{i \in A} x_i - \sum_{i \notin A} x_i$. Let $\mathcal{A} = \{A : x_A \in J\}$. It is enough to show that \mathcal{A} is a Sperner family. Indeed, if $A, B \in \mathcal{A}$ and $A \subset B$ then $x_B - x_A = 2 \sum_{i \in B \setminus A} x_i \ge 2$. Thus we cannot have both $x_A, x_B \in J$.