21-301 Combinatorics Homework 7 Due: Monday, November 7

- 1. Let $m = \lfloor n/2 \rfloor$. Describe a family \mathcal{A} of size $2^{n-1} + \binom{n-1}{m-1}$ that has the following property: If $A_1, A_2 \in \mathcal{A}$ are disjoint then $A_1 \cup A_2 = [n]$.
- 2. Let A_1, \ldots, A_n and B_1, \ldots, B_n be distinct finite subsets of $\{1, 2, 3, \ldots, \}$ such that
 - for every $i, A_i \cap B_i = \emptyset$, and
 - for every $i \neq j$, $(A_i \cap B_j) \cup (A_j \cap B_i) \neq \emptyset$.

Prove that for every real number $0 \le p \le 1$.

$$\sum_{i=1}^{n} p^{|A_i|} (1-p)^{|B_i|} \le 1.$$
(1)

(Hint: Define disjoint events \mathcal{E}_i such that the LHS of (1) is $\sum_i \Pr(\mathcal{E}_i)$.)

3. Let x_1, x_2, \ldots, x_n be real numbers such that $x_i \ge 1$ for $i = 1, 2, \ldots, n$. Let J be any open interval of width 2. Show that of the 2^n sums $\sum_{i=1}^n \epsilon_i x_i$, $(\epsilon_i = \pm 1)$, at most $\binom{n}{\lfloor n/2 \rfloor}$ lie in J.

(Hint: use Sperner's lemma.)