21-301 Combinatorics Homework 6 Due: Monday, October 31

1. Let G = (V, E) be an *r*-regular graph with *n* vertices i.e. every vertex has degree *r*. $S \subseteq V$ is a *dominating set* if $w \notin S$ implies that there exists $v \in S$ for which $\{v, w\} \in E$. Show, by the probabilistic method, that *G* has a dominating set of size at most $\frac{1+\ln r}{r}n$. **Solution:** Let $p = \frac{\ln r}{r}$ and let S_1 be a random sub-set of *V* where each $v \in V$ is placed inot *S*, independently with probability *p*. Let S_2 be the set of vertices that are not adjacent to any vertex of S_1 . The set $S = S_1 \cup S_2$ is a dominating set.

$$\mathbf{E}(|S|) = \mathbf{E}(|S_1|) + \mathbf{E}(|S_2|) = np + n(1-p)^{r+1} \le np + ne^{-rp} \le \frac{1+\ln r}{r}n.$$

So there must be a dominating set of the required size.

2. Let S_1, S_2, \ldots, S_m and T_1, T_2, \ldots, T_m be two partitions of the set X into sets of size k. Show that there is a set $\{s_1, s_2, \ldots, s_m\}$ that is a set of distinct representatives for both S_1, S_2, \ldots, S_m and T_1, T_2, \ldots, T_m .

Solution Consider the bipartite (multi-)graph G with vertex set A = B = [m] and an edge (i, j) for each $x \in S_i \cap T_j$. This graph is k-regular and so has a perfect matching which we will write as $e_i = (i, \pi(i))$ for $i \in [m]$. Now choose an element $x_i \in S_i \cap T_{\pi(i)}$ for each edge e_i . Clearly $x_i \in S_i$ and $x_i \in T_{\pi(i)}$ for $i \in [m]$. So the only thing we need to do is to show that the x_i are distinct. But if $x_i = x_j$ then $S_i \cap S_j \neq \emptyset$ and then S_1, S_2, \ldots, S_m is not a partition, contradiction.

3. Let G be a bipartite graph with bipartition X, Y such that the degree $d(x) \ge 1$ for all $x \in X$ and $d(x) \ge d(y)$ for all edges (x, y) of G. Show that G has a matching that covers every vertex of X.

(Hint: Suppose there is no such matching. Consider $S \subseteq X$ with fewer than |S| neighbours and as small as possible.)

Solution Suppose that there is no matching covering X. Then by Hall's Theorem, there exists a witness $S \subseteq X$ such that |S| > |N(S)|. Assume that S is as small as possible and the T = N(S). Then we have |S| = |T| + 1, else we can delete an element of S and find a smaller witness. Now let $S' = S \setminus \{s\}$ for some $s \in S$. Then we have $|A| \leq |N(A)|$ for all $A \subseteq S'$ else A will be a smaller witness than S. So by Hall's theorem, there is a perfect matching of S' into T. But this implies that

$$\sum_{x\in S} d(x) = d(s) + \sum_{x\in S'} d(x) > \sum_{x\in S'} d(x) \ge \sum_{y\in T} d(y).$$

But if E(S:T) denotes the set of edges from S to T then

$$\sum_{x \in S} d(x) = |E(S:T)| \le \sum_{y \in T} d(y),$$

contradiction.