21-301 Combinatorics Homework 6 Due: Monday, October 31

- 1. Let G = (V, E) be an *r*-regular graph with *n* vertices i.e. every vertex has degree *r*. $S \subseteq V$ is a *dominating set* if $w \notin S$ implies that there exists $v \in S$ for which $\{v, w\} \in E$. Show, by the probabilistic method, that *G* has a dominating set of size at most $\frac{1+\ln r}{r}n$.
- 2. Let S_1, S_2, \ldots, S_m and T_1, T_2, \ldots, T_m be two partitions of the set X into sets of size k. Show that there is a set $\{s_1, s_2, \ldots, s_m\}$ that is a set of distinct representatives for both S_1, S_2, \ldots, S_m and T_1, T_2, \ldots, T_m .
- 3. Let G be a bipartite graph with bipartition X, Y such that the degree d(x) ≥ 1 for all x ∈ X and d(x) ≥ d(y) for all edges (x, y) of G. Show that G has a matching that covers every vertex of X.
 (Hint: Suppose there is no such matching. Consider S ⊆ X with fewer than |S|

neighbours and as small as possible.)