21-301 Combinatorics Homework 5 Due: Monday, October 4

1. A clown stands at the side of a swimming pool. In his hand is a bag containing n red balls and n blue balls. At each step he puts his hand into the bag and pulls out a random ball and throws it away. If the ball is red, he makes a step towards the pool and if it is blue, he makes a step away from the pool. What is the probability that the clown falls in to the pool?

Solution: Imagine that the pool is to the left of the clown and that the sequence of moves by the clown can be described by a sequence \mathbf{x} of n R's and L's. The clown will stay dry iff every prefix $x_1x_2\cdots x_k$ of \mathbf{x} has at least as many R's as L's. The number of choices for \mathbf{x} is then the number of choices of grid paths from (0,0) to (n,n) that never go below the diagonal i.e. $\frac{1}{n+1}\binom{2n}{n}$ and the probability of staying dry is

$$\frac{\frac{1}{n+1}\binom{2n}{n}}{\binom{2n}{n}} = \frac{1}{n+1}.$$

2. Suppose $n \ge 4$ and let E_1, E_2, \ldots, E_m be an arbitrary collection of *n*-subsets of *E*. Suppose that $m \le 4^{n-1}/3^n$. Show that there is a 4-coloring of *E* such that in every E_i , all 4 colors are represented.

Solution: Color E randomly. Let \mathcal{E}_i be the event that E_i does not receive all four colors. Let $\mathcal{E} = \bigcup_{i=1}^m \mathcal{E}_i$. We need to show that $\Pr(\mathcal{E}) < 1$. But

$$\Pr(\mathcal{E}) \le \sum_{i=1}^{m} \Pr(\mathcal{E}_i) = m \Pr(\mathcal{E}_1).$$
(1)

Let Ω be the set of colorings of E_1 . Let Ω_j be the set of colorings E_1 that do not use color j.

Now if $\Omega_J = \bigcap_{i \in J} \Omega_i$ then

$$\left| \bigcup_{j=1}^{4} \Omega_{j} \right| = \sum_{j=1}^{4} |\Omega_{j}| - \sum_{\substack{J \subseteq [4] \\ |J|=2}} |\Omega_{J}| + \sum_{\substack{J \subseteq [4] \\ |J|=3}} |\Omega_{J}|$$
$$= 4 \cdot 3^{n} - 6 \cdot 2^{n} + 4 \cdot 1$$
$$< 4 \cdot 3^{n}.$$

So,

$$\Pr(\mathcal{E}_1) = \frac{\left|\bigcup_{j=1}^4 \Omega_j\right|}{|\Omega|} < \frac{4 \cdot 3^n}{4^n}.$$

Plugging this into (1) we see that $Pr(\mathcal{E}) < 1$ as desired.

3. Let p = 3k + 2 be prime. Show that every set of positive integers S not containing a multiple of p contains a subset T of size at least |S|/3 such that if $x, y, z \in T$ then $x + y \neq z \mod p$. (Hint: Let $C = \{k+1, k+2, \dots, 2k+1\}$ and let x be chosen randomly from $\{1, 2, \dots, p-1\}$. Now consider the number of $s \in S$ such that $xs \mod p$ lies in C.)

Solution: We observe first that C is sum free. Let $k + x, k + y, k + z \in C$ where $1 \leq x, y, z \leq k + 1$. If $k + x + k + y = k + z \mod p$ then $z = k + x + y \mod p$ which implies that x is at least k + 2, contradiction.

Next let $S = \{s_1, s_2, \ldots, s_N\}$ and let $Z_i = 1$ if $xs_i \mod p \in C$ and let $Z_i = 0$ otherwise. Then xs_i is equally likely to be any member $\{1, 2, \ldots, p-1\}$. So,

$$\Pr(Z_i = 1) = \frac{k+1}{3k+1} > \frac{1}{3}.$$

So, $E(Z_1 + \cdots + Z_N) > N/3$ and hence there exists an x such that if $T = xS \cap C$ then |T| > N/3. But then T is sum-free and $x^{-1}T \mod p$ is a subset of S that is sum-free.