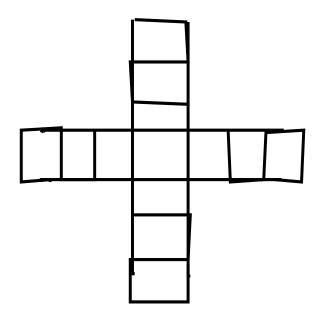
21-301 Combinatorics Homework 4 Due: Monday, October 10

1. How many ways are there of coloring the squares of diagram below in q colors if the group acting is $G = \{e, a, b, c, p, q, r, s\}$ of the notes on "Polya Theory of Counting".



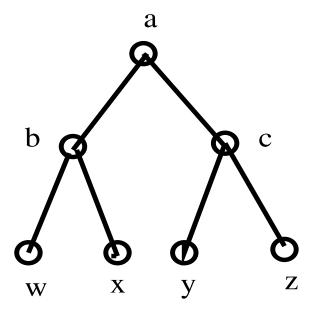
You can assume that each arm has n squares. Solution: We get the following cycle structure:

(1) e: $(4n + 1) \times 1$. So $|Fix(e)| = q^{4n+1}$. (2) a: $n \times 4$; 1×1 . So $|Fix(a)| = q^{n+1}$. (3) b: $2n \times 2$; 1×1 . So $|Fix(b)| = q^{2n+1}$. (4) c: $n \times 4$; 1×1 . So $|Fix(c)| = q^{n+1}$. (5) p: $n \times 2$; $(2n + 1) \times 1$. So $|Fix(p)| = q^{3n+1}$. (6) q: $n \times 2$; $(2n + 1) \times 1$. So $|Fix(q)| = q^{3n+1}$. (7) r: $2n \times 2$; 1×1 . So $|Fix(r)| = q^{2n+1}$. (8) s: $2n \times 2$; 1×1 . So $|Fix(s)| = q^{2n+1}$.

So the number of colorings is

$$\frac{1}{8}(q^{4n+1} + 2 \cdot q^{3n+1} + 3 \cdot q^{2n+1} + 2 \cdot q^{n+1}).$$

2. How many ways are there of coloring the edges of the diagram below in q colors if the group acting consists of sequences of rotations of the sub-tree under a vertex. Think of each permutation as a permutation of the letters x, y, z, w. First determine the group elements. There are 8 in all.



Solution: The group can be expressed as

$$G = \{e, a, b, c, a \circ b, a \circ c, b \circ c, a \circ b \circ c\}.$$

To verify this, one first checks that there actions on x, y, z, w are all different: The number at the right hand end is the number of cycles in the permutation.

e	w	x	y	z	6×1
a	z	y	x	w	3×2
b	x	w	y	z	$5 = 4 \times 1 + 1 \times 2$
c	w	x	z	y	$5 = 4 \times 1 + 1 \times 2$
$a \circ b$	z	y	w	x	$2 = 1 \times 2 + 1 \times 4$
$a \circ c$	y	z	x	w	$2 = 1 \times 2 + 1 \times 4$
$b \circ c$	x	w	z	y	$4 = 2 \times 1 + 2 \times 2$
$a\circ b\circ c$	y	z	w	x	$3 = 3 \times 2$

After this one verifies that all other combinations yield members of G. This follows from the identities:

$$a \circ a = b \circ b = c \circ c = e; b \circ a = a \circ c; c \circ a = a \circ b; c \circ b = b \circ c.$$

It follows that the number of colorings is

$$\frac{1}{8}(q^6 + q^3 + q^5 + q^5 + q^2 + q^2 + q^4 + q^3).$$

3. How many ways are there of placing k 1's on a regular convex n-gon if each 1 must be separated by at least 2 0's. You can assume that the group acting consists of the rotations through $\frac{2\pi j}{n}$ for $j = 0, 1, \ldots, n-1$. To simplify matters, you can assume that k is prime.

It will help to understand the material on pp20/21 of the notes: "Polya theory of counting".

Solution: The rotation $e_j, j \ge 1$ through $\frac{2\pi j}{n}$ breaks up into d cycles of length $\frac{n}{d}$ where d is the g.c.d. of j, n. An assignment of 0's and 1's will be in $Fix(e_j)$ iff the cycles are all 1's or all 0's. Because k is prime, if $Fix(e_j) \ne \emptyset$ then there must be one cycle of 1's and d-1 of 0's. This means that $\frac{n}{d} = k$ and hence k divides n. In which case, if $j \ge 1$ then

$$|Fix(e_j)| = \begin{cases} d & j = d, 2d, \dots, (k-1)d \\ 0 & otherwise \end{cases}$$

So, the number of ways is

$$\begin{cases} \frac{1}{n} \frac{n}{k} \binom{n-2k-1}{k-1} = \frac{1}{k} \binom{n-2k-1}{k-1} & k \text{ does not divide } n\\ \frac{1}{n} \left(\frac{n}{k} \binom{n-2k-1}{k-1} + (k-1)d \right) = \frac{1}{k} \left(\binom{n-2k-1}{k-1} + k-1 \right) & n = kd. \end{cases}$$