21-301 Combinatorics Homework 1 Due: Wednesday, September 7

1. How many integral solutions of

$$x_1 + x_2 + x_3 + x_4 + x_5 = 100$$

satisfy $x_1 \ge 5$, $x_2 \ge 8$, $x_3 \ge -2$, $x_4 \ge 3$ and $x_5 \ge 1$? Solution Let

$$y_1 = x_1 - 5$$
, $y_2 = x_2 - 8$, $y_3 = x_3 + 2$, $y_4 = x_4 - 3$, $y_5 = x_5 - 1$.

An integral solution of $x_1 + x_2 + x_3 + x_4 + x_5 = 100$ such that $x_1 \ge 5$, $x_2 \ge 8$, $x_3 \ge -2$, $x_4 \ge 3$ and $x_5 \ge 1$ corresponds to an integral solution of $y_1 + y_2 + y_3 + y_4 + y_5 = 85$ such that $y_1, \ldots, y_5 \ge 0$. From a result in class,

$$|\{(y_1, y_2, y_3, y_4, y_5) : y_1, \dots, y_5 \in \mathbb{Z}_+ \text{ and } y_1 + \dots + y_5 = 85\}| = \binom{85+5-1}{5-1} = \binom{89}{4}.$$

2. Show that

$$\sum_{k=0}^{n} \binom{n}{k} \binom{k}{2} = \binom{n}{2} 2^{n-2}.$$

The LHS is the number of choices of pairs (A, B) where $A, B \subseteq [n]$ and $A \subseteq B$ and |A| = 2. The RHS is the number of choices of pairs (A, C) where $A \subseteq [n]$ and $C \subseteq [n] \setminus A$. The map $(A, B) \to (A, B \setminus A)$ is a bijection that shows the two sides are equal.

3. How many ways are there of placing k 1's and n - k 0's at the vertices of the cycle and at the vertices of the path in the diagram below so that each 1 is separated by at least one 0? Thus there will either be 2k 1's altogether, when the common vertex has a 0 on it, or 2k - 1 1's altogether, when the common vertex has a 1 on it.

The cycle and the path both have n vertices. There are 2n - 1 vertices altogether.

Solution We split the arrangements of 0's and 1's into two sets S_0, S_1 . S_1 will be the set of arrangements where there is a 1 at the intersection of the polygon and the path.

For S_0 , we place a 0 at the intersection. Focus first on the polygon and consider the sequence $a_0, a_1, \ldots a_k$ describing the number of 0's we encounter between 1's as we traverse one polygon in a clockwise manner. Here we have $a_0 + a_1 + \cdots + a_k = n - k - 1$ and

 $a_0, a_k \geq 0$ and $a_i \geq 1$ for $i \neq 0, k$. The number of choices for a_0, a_1, \ldots, a_k is therefore $\binom{(n-k-1)+(k+1)-1-(k-1)}{(k+1)-1} = \binom{n-k}{k}$. The number of ways of putting the k 1's on the path is the number of choices of $a_1 \geq 0, a_2, \ldots, a_{k-1} \geq 1, a_{k+1} \geq 0$ such that $a_1 + \cdots + a_{k+1} = n - k$ and this is $\binom{n-k}{k}$. So $|S_0| = \binom{n-k}{k}^2$

In class we showed that if we put a 1 at a particular point of one polygon, then the number of ways of putting k - 1 1's onto the rest of the cycle is $\binom{n-k-1}{k-1}$. The number of ways of putting the k - 1 1's on the path is the number of choices of $a_1, \ldots, a_{k-1} \ge 1, a_k \ge 0$ such that $a_1 + \cdots + a_k = n - k$ and this is $\binom{n-k}{k-1}$. This implies that $|S_1| = \binom{n-k-1}{k-1}\binom{n-k}{k-1}$, since we choose an arrangement for the polygon and an arrangement for the path.

The total is

$$\binom{n-k}{k}^{2} + \binom{n-k-1}{k-1}\binom{n-k}{k-1}$$