21-301 Combinatorics Homework 8 Due: Monday, November 1

1. Let \mathcal{A} be an intersecting family of subsets of [n] such that $A \in \mathcal{A}$ implies $k \leq |A| \leq \ell \leq n/2$. Show that

$$|\mathcal{A}| \le \sum_{i=k}^{\ell} \binom{n-1}{i-1}.$$

Solution: Let $\mathcal{A}_i = \{A \in \mathcal{A} : |A| = i\}$. Then \mathcal{A}_i is an intersecting family and so by the Erdős-Ko-Rado theorem, we have $|\mathcal{A}_i| \leq \binom{n-1}{i-1}$ and the result follows from $|\mathcal{A}| = |\mathcal{A}_k| + \cdots + |\mathcal{A}_\ell|$.

2. Let $m = \lfloor n/2 \rfloor$. Describe a family \mathcal{A} of size $2^{n-1} + \binom{n-1}{m-1}$ that has the following property: If $A_1, A_2 \in \mathcal{A}$ are disjoint then $A_1 \cup A_2 = [n]$.

Solution: If n = 2m + 1 is odd, let $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ where $\mathcal{A}_1 = \{A \subseteq [n] : |A| \ge m + 1\}$ and $\mathcal{A}_2 = \{A \subseteq [n] : |A| = m, A \ni 1\}$. Here $|\mathcal{A}_1| = 2^{n-1}$, because if we partition the subsets of [n] into 2^{n-1} pairs, a set and its complement, then the larger of the two sets is in \mathcal{A}_1 . Clearly $|\mathcal{A}_2| = \binom{n-1}{m-1}$. Both \mathcal{A}_1 and \mathcal{A}_2 are intersecting families and if $A \in \mathcal{A}_1, B \in \mathcal{A}_2$ and $A \cap B = \emptyset$ then we have |B| = m and $|A| \ge m + 1$ and so A, Bmust be complementary.

If n = 2m is even then let $\mathcal{A} = \{A \subseteq [n] : |A| \ge m\}$. Now

$$|\mathcal{A}| = |\mathcal{A}_1| + \binom{n}{m} = |\mathcal{A}_1| + \frac{1}{2}\binom{n}{m} + \frac{1}{2}\binom{n}{m} = 2^{n-1} + \frac{1}{2}\binom{n}{m} = 2^{n-1} + \binom{n-1}{m-1}.$$

Here, $|\mathcal{A}_1| + \frac{1}{2} \binom{n}{m} = 2^{n-1}$ because we can obtain this number of sets by taking one set from each pair of complementary sets. Each $A \in \mathcal{A}_1$ intersects all sets of size m or more and two sets of size m fail to intersect only when they are complementary.

3. Subsets $A_i, B_i \subseteq [n], i = 1, 2, ..., m$ satisfy $A_i \cap B_i = \emptyset$ for all i and $A_i \cap B_j \neq \emptyset$ for all $i \neq j$. Show that

$$\sum_{i=1}^m \frac{1}{\binom{|A_i|+|B_i|}{|A_i|}} \leq 1.$$

Solution: Let π be a random permutation of [n] and for disjoint sets A, B define the event $\mathcal{E}(A, B)$ by

$$\mathcal{E}(A, B) = \{ \pi : \max\{\pi(a) : a \in A\} < \min\{\pi(b) : b \in B\} \}.$$

The events $\mathcal{E}_i = \mathcal{E}(A_i, B_i)$, i = 1, 2, ..., m are disjoint. Indeed, suppose that $\mathcal{E}(A_i, B_i)$ and $\mathcal{E}(A_j, B_j)$ occur. Let $x \in A_i \cap B_j$ and $y \in A_j \cap B_i$. x, y exist by (ii) and (i) implies that they are distinct. Then $\mathcal{E}(A_i, B_i)$ implies that $\pi(x) < \pi(y)$ and $\mathcal{E}(A_j, B_j)$ implies that $\pi(x) > \pi(y)$, contradiction.

Observe next that for two fixed disjoint sets A, B, |A| = a, |B| = b there are exactly $\binom{n}{a+b}a!b!(n-a-b)!$ permutations that produce the event $\mathcal{E}(A, B)$. Indeed, there are

 $\binom{n}{a+b}$ places to position $A \cup B$. Then there are a!b! that place A as the first a of these a+b places. Finally, there are (n-a-b)! ways of ordering the remaining elements not in $A \cup B$.

Thus

$$\Pr(\mathcal{E}(A_i, B_i)) = \frac{n!}{(|A_i| + |B_i|)!(n - |A_i| - |B_i|)!} |A_i|!|B_i|!(n - |A_i| - |B_i|)!\frac{1}{n!}$$
$$= \frac{1}{\binom{|A_i| + |B_i|}{|A_i|}}.$$

But then the disjointness of the collection of events $\mathcal{E}(A_i, B_i)$ implies that

$$\sum_{i=1}^{m} \Pr(\mathcal{E}(A_i, B_i)) \le 1.$$