21-301 Combinatorics Homework 6 Due: Monday, October 11

1. Let $\chi(G)$ be the chromatic number of graph G = (V, E). Let $\alpha(G), \kappa(G)$ denote the size of the largest independent set of G, clique of G respectively. Show that

$$\chi(G) \ge \max\left\{\frac{|V|}{\alpha(G)}, \kappa(G)\right\}.$$

Show further that $\chi(G)\chi(\overline{G}) \ge |V|$.

Here \overline{G} is the complement of G i.e. the graph with edge set $\binom{V}{2} \setminus E$.

- 2. Let G = (V, E) be a graph with kn vertices. Show, by the probabilistic method, that there is a partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$ with $|V_i| = n, i = 1, 2, \ldots, k$ such that at most |E|/k of the edges of G have both of their endpoints in the same part of the partition.
- 3. Let G = (V, E) be an *r*-regular graph with *n* vertices i.e. every vertex has degree *r*. $S \subseteq V$ is a *dominating set* if $w \notin S$ implies that there exists $v \in S$ for which $\{v, w\} \in E$. Show, by the probabilistic method, that *G* has a dominating set of size at most $\frac{1+\ln r}{r}n$.