21-301 Combinatorics Homework 5 Due: Monday, October 4

1. A bag contains *n* balls, each of a different color. In a round, a person picks a random ball from the bag, makes a note of its color and then puts it back. What is the expected number of rounds required for the person to have pulled out a ball of each color at least once?

Solution: Let T_i be the number of rounds needed to increase the number of different colors chosen so far from i - 1 to i. Thus $T_1 = 1$ but in general T_i is a random variable and the question asks for $E(T_1 + T_2 + \cdots + T_n)$.

Now when i - 1 colors have been chosen, the probability that we see a new one on the next round is $\frac{n-i+1}{n}$, regardless of the previous drawings. Thus T_i is distributed as a geometric random variable with probability of success $\frac{n-i+1}{n}$. Thus

$$E(T_i) = \frac{n}{n-i+1}$$

and the expected total number of drawings is

$$n\sum_{i=1}^{n}\frac{1}{n-i+1} = n\sum_{i=1}^{n}\frac{1}{i}.$$

2. A clown stands at the side of a swimming pool. In his hand is a bag containing n red balls and n blue balls. At each step he puts his hand into the bag and pulls out a random ball and throws it away. If the ball is red, he makes a step towards the pool and if it is blue, he makes a step away from the pool. What is the probability that the clown falls in to the pool?

Solution: Imagine that the pool is to the left of the clown and that the sequence of moves by the clown can be described by a sequence \mathbf{x} of n R's and L's. The clown will stay dry iff every prefix $x_1x_2\cdots x_k$ of \mathbf{x} has at least as many R's as L's. The number of choices for \mathbf{x} is then the number of choices of grid paths from (0,0) to (n,n) that never go below the diagonal i.e. $\frac{1}{n+1}\binom{2n}{n}$ and the probability of staying dry is

$$\frac{\frac{1}{n+1}\binom{2n}{n}}{\binom{2n}{n}} = \frac{1}{n+1}$$

3. Let p = 3k + 2 be prime. Show that every set of positive integers S not containing a multiple of p contains a subset T of size at least |S|/3 such that if $x, y, z \in T$ then $x + y \neq z \mod p$.

(Hint: Let $C = \{k+1, k+2, \dots, 2k+1\}$ and let x be chosen randomly from $\{1, 2, \dots, p-1\}$. Now consider the number of $s \in S$ such that $xs \mod p$ lies in C.)

Solution: We observe first that C is sum free. Let $k + x, k + y, k + z \in C$ where $1 \leq x, y, z \leq k + 1$. If $k + x + k + y = k + z \mod p$ then $z = k + x + y \mod p$ which implies that x is at least k + 2, contradiction.

Next let $S = \{s_1, s_2, \ldots, s_N\}$ and let $Z_i = 1$ if $xs_i \mod p \in C$ and let $Z_i = 0$ otherwwise. Then xs_i is equally likely to be any member $\{1, 2, \ldots, p-1\}$. So,

$$\Pr(Z_i = 1) = \frac{k+1}{3k+1} > \frac{1}{3}.$$

So, $E(Z_1 + \cdots + Z_N) > N/3$ and hence ther eexists an x such that if $T = xS \cap C$ then |T| > N/3. But then T is sum-free and $x^{-1}T \mod p$ is a subset of S that is sum-free.