

21-301 Combinatorics Homework 11 Due: Monday, November 22



- 1. How many ways are there of k-coloring the squares of the above diagram if the group acting is  $e_0, e_1, e_2, e_3$  where  $e_j$  is rotation by  $2\pi j/4$ . Assume that instead of 28 squares there are 4n 4.
- 2. How many ways are there of k-coloring the squares of the same diagram if the group acting is  $e_0, e_1, e_2, e_3, p, q, r, s$  where p, q, r, s are horizontal, vertical, diagonal reflections.
- 3. How many ways are there of k-coloring the 7 vertices of the tree below if the group acting is has elements  $e, g_a, g_b, g_c$  where e is the identity and  $g_x$  rigidly rotates the tree below x.

