21-301 Combinatorics Homework 6 Due: Monday, October 27

- 1. Using Cayley's formula, show that the graph obtained from K_n by deleting one edge has exactly $(n-2)n^{n-3}$ spanning trees.
- 2. Let G = (V, E) be an *r*-regular graph with *n* vertices i.e. every vertex has degree *r*. $S \subseteq V$ is a *dominating set* if $w \notin S$ implies that there exists $v \in S$ for which $\{v, w\} \in E$. Show, by the probabilistic method, that *G* has a dominating set of size at most $\frac{1+\ln r}{r}n$.
- 3. Let G = (V, E) be a graph with minimum degree at least three. Show that it contains a cycle of even length. (Hint: Consider a longest path).