
21-301 Combinatorics

Homework 4
Due: Monday, October 6

1. Let a0, a1, a2, . . . be the sequence defined by the recurrence relation

an + 3an−1 + 2an−2 = 4 for n ≥ 2

with initial conditions a0 = 2 and a1 = 6. Determine the generating function for this
sequence, and use the generating function to determine an for all n.
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2. Suppose that you are asked to multiply a collection of m × m matrices to form the
product A1A2 · · ·An+1. Let C0 = 1 and let Cn be the number of ways to do this. For
example if n = 2 then dn = 2. We can compute (A1A2)A3 or A1(A2A3). Show that

Cn+1 =

n
∑

k=0

CkCn−k.

Determine Cn.

Solution: The term CkCn−k counts the number of ways of first computing the prod-
ucts C1C2 · · ·Ck and Ck+1Ck+2 · · ·Cn+1 and then multiplying the two resulting matrices
together. By summing over k we count all possible ways of doing the multiplication.

Let an be the number of solutions to the polygon triangulation problem. Thus a0 =
0, a1 = a2 = 1 and an =
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We prove this by induction on n. It is clearly true for n = 0. So,
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This completes the inductive step.

3. Let Tn denote the number of binary trees with n + 1 leaves. Show that
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TkTn−k.

Determine Tn.

Solution: The product TkTn−k is the number of trees whose left sub-tree has k vertices
and whose right sub-tree has n − k vertices. Together with the root, this makes n + 1
vertices altogether.By summing over k = 0 to n we count allpossible trees. Now T0 = 1
and Tn satisfies the same recurrence as Cn of Question 2. Thus Tn = Cn = 1
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