21-301 Combinatorics Homework 4 Due: Monday, October 6

1. Let a_0, a_1, a_2, \ldots be the sequence defined by the recurrence relation

 $a_n + 3a_{n-1} + 2a_{n-2} = 4$ for $n \ge 2$

with initial conditions $a_0 = 2$ and $a_1 = 6$. Determine the generating function for this sequence, and use the generating function to determine a_n for all n.

2. Suppose that you are asked to multiply a collection of $m \times m$ matrices to form the product $A_1A_2 \cdots A_{n+1}$. Let $C_0 = 1$ and let C_n be the number of ways to do this. For example $C_2 = 2$. We can compute $(A_1A_2)A_3$ or $A_1(A_2A_3)$. Show that

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}.$$

Determine C_n .

3. Let T_n denote the number of binary trees with n+1 leaves. Show that

$$T_{n+1} = \sum_{k=0}^{n} T_k T_{n-k}.$$

Determine T_n .

 $T_2 = 2.$