21-301 Combinatorics Homework 3 Due: Monday, September 29

1. Show that the number of sequences out of $\{a, b, c\}^n$ which do not contain a consecutive sub-sequence of the form xx where x = a, b satisfies the recurrence $b_0 = 1, b_1 = 3$ and

$$b_n = b_{n-1} + 2(b_{n-2} + \dots + b_0) + 2b_0.$$
(1)

[Hint: Consider the number of sequences where the first c from the left is at position k.]

Deduce from this that

$$b_n = 2b_{n-1} + b_{n-2}. (2)$$

Solution: Let B_n denote the set of allowed sequences of length n. Suppose that c appears first in position k. Then the sequence starts $abab \cdots$ or $baba \cdots$, then c and then any sequence from B_{n-k} . Thus the number of such is $2b_{n-k}$ for $1 \le k \le n$. The extra $2b_0 = 2$ counts sequences without c.

To get (2), subtract equation (1) with n replaced by n-1 from equation (1).

2. Show that the number of sequences out of $\{a, b, c\}^n$ which do not contain a consecutive sub-sequence of the form *abc* satisfies the recurrence $b_0 = 1, b_1 = 3, b_2 = 9$ and

$$b_n = 2b_{n-1} + c_n \tag{3}$$

$$c_n = c_{n-1} + b_{n-2} + c_{n-2} + b_{n-3} \tag{4}$$

where c_n is the number of such sequences that start with a.

Now find a recurrence only involving b_n , by using (3) to eliminate c_n from (4).

Solution: There are $2b_{n-1}$ sequences of the required form that start with b or c. There are c_n sequences that start with a. This explains (3).

There are c_{n-1} sequences that start with aa, b_{n-2} sequences that start with ac, c_{n-2} sequences that start with aba and b_{n-3} sequences that start with abb. This covers the possibilities for sequences starting with a.

We have

$$b_n - 2b_{n-1} = b_{n-1} - 2b_{n-2} + b_{n-2} + b_{n-2} - 2b_{n-3} + b_{n-3}$$

and so

$$b_n = 3b_{n-1} - b_{n-3}$$

3. Let a_0, a_1, a_2, \ldots be the sequence defined by the recurrence relation

$$a_n + 3a_{n-1} + 2a_{n-2} = n \text{ for } n \ge 2$$

with initial conditions $a_0 = 1$ and $a_1 = 3$. Determine the generating function for this sequence, and use the generating function to determine a_n for all n.

Solution:

$$\sum_{n=2}^{\infty} (a_n + 3a_{n-1} + 2a_{n-2})x^n = \sum_{n=2}^{\infty} nx^n$$
$$a(x) - 1 - 3x + 3x(a(x) - 1) + 2x^2a(x) = \frac{x}{(1-x)^2} - x$$
$$a(x)(1 + 3x + 2x^2) = \frac{x}{(1-x)^2} + 1 + 5x$$

$$a(x) = \frac{x}{(1+x)(1+2x)(1-x)^2} + \frac{1+5x}{(1+x)(1+2x)}$$

= $\frac{17/4}{1+x} + \frac{-31/9}{1+2x} + \frac{1/36}{1-x} + \frac{1/6}{(1-x)^2}$
= $\sum_{n=0}^{\infty} \left(\frac{17}{4}(-1)^n - \frac{31}{9}(-2)^n + \frac{1}{36} + \frac{1}{6}(n+1)\right) x^n.$

 So

$$a_n = \frac{17}{4}(-1)^n - \frac{31}{9}(-2)^n + \frac{1}{36} + \frac{1}{6}(n+1) \qquad \text{for } n \ge 0.$$