
21-301 Combinatorics

Homework 2
Due: Friday, September 12
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Solution We use induction on k for a fixed n.

Base Case: k = 0. This is trivial,
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Inductive Step: Suppose that the identity is true for some k ≥ 0. Then
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2. (a) Let Sk denote the collection of k-sets {1 ≤ i1 < i2 < · · · < ik ≤ m − 2} ⊆ [m] such
that it+1 − it ≥ 2 for 1 ≤ t < k. Show that
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(b) How many of the 3n sequences x1x2 · · ·x2n, xi ∈ {a, b, c}, i = 1, 2, . . . , n are there
such that abc does not appear as a subsequence e.g. if n = 6 then we include aabbcc
in the count, but we exclude aabcba.

Solution (a) For a first argument, let z1 = i1, z2 = i2 − i1, . . . , zk = ik − ik+1, zk+1 =
m − ik. We can count the number of choices for z1, z2, . . . , zk+1. But these are the
soluitons to

z1 + z2 + · · ·+ zk+1 = m, z1 ≥ 1, z2, z3, . . . , zk ≥ 3, zk+1 ≥ 2.

The number of such is
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Alternatively, we can represent a k-set by a sequence of k 1’s and m−k 0’s in the usual
way. Now we need every pair of 1’s separated by at least 2 0’s. We can start with a
sequence of m − 2k 0’s, choose k of them and replace each of these k 0’s by 100. This
process is reversible. For the 0,1 sequences we are counting each 1 is followed by at
least 2 0’s. Just replace 100 by 0 to get a sequence of m − k 0’s.

(b) Let A = {a, b, c}n. Then let

Ak = {x ∈ A : xk = a, xk+1 = b, xk+2 = c}



for k = 1, 2, . . . , n − 2.

Let S =
⋃

k≥0 Sk. Then
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Then we must compute
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3. Find an expression for the size of the set

{(x1, x2 . . . , xm)} ∈ Zm : x1 + x2 + · · · + xm = n and a ≤ xj ≤ b for j = 1, 2, . . . , m}.

[You should use Inclusion-Exclusion and expect to have your answer as a sum.]

Solution: Let

A = {(x1, x2 . . . , xm)} ∈ Zm : x1 + x2 + · · ·+ xm = n and a ≤ xj for j = 1, 2, . . . , m}.

Then let
Ai = {x ∈ A : xi ≥ b + 1}.

Now,

AS = {(x1, x2 . . . , xm)} ∈ Zm : x1 + x2 + · · · + xm = n

and a ≤ xj for j /∈ S, b + 1 ≤ xj for j ∈ S}.

So,
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