21-301 Combinatorics Homework 10 Due: Monday, December 1

1. How many ways are there to k-color an $n \times n$ chessboard when n is odd. The group G is the usual 8 element group e, a, b, c, p, q, r, s.

Solution: All we need do is compute the number of cycles in the permutations as applied to the chessboard. Let n = 2m + 1. In the table, $r \times s$ is short for r cycles of length s.

Permutation	Number of cycles					
e	$n^2 \times 1$					
a	$m(m+1)\times 4+1\times 1$					
b	$2m(m+1) \times 2 + 1 \times 1$					
С	$m(m+1)\times 4 + 1\times 1$					
p	$mn \times 2 + n \times 1$					
q	$mn \times 2 + n \times 1$					
r	$mn \times 2 + n \times 1$					
S	$mn \times 2 + n \times 1$					

Thus the number of colorings is

$$\frac{1}{8}(k^{n^2} + 2 \times k^{m(m+1)+1} + k^{2m(m+1)+1} + 4 \times k^{mn+n})$$

2. How many ways are there to arrange 2 M's, 4 A's, 5 T's and 6 H's under the condition that any arrangement and its inverse are to be considered the same.

Solution: The group G consists of $\{e, a\}$ where a is a reflection through the middle of the word. Now

$$|Fix(e)| = \frac{17!}{2!4!5!6!} = 85765680$$
$$|Fix(a)| = \frac{8!}{1!2!2!3!} = 1680$$

A sequence is in Fix(a) if it is a palindrome i.e. looks the same backwards as forwards. It must have middle letter T. Then we arrange 1

M, 2 A's, 2 T"s and 3 H's in any order and then complete the sequence uniquely to a palindrome.

Thus by Burnside's theorem, the number of sequences is $\frac{85765680+1680}{2} = 42883680$.

3. A necklace is made of 10 beads strung together in a cycle. Find the pattern inventory for the two colourings of the necklace when the group G is the dihedral group D_{10} .

The *dihedral* group D_n is the group of symmetries of a regular *n*-gon under rotations $R_0, R_1, \ldots, R_{n-1}$ and reflections S_1, S_1, \ldots, S_n . Here, assuming *n* is even, the permutations are

- (i) $e = R_0, R_1, \ldots, R_{n-1}$ where R_i is a rotation through $i\pi/4$,
- (ii) $S_1, S_1, S_2, \ldots, S_{n/2}$ where S_i is a rotation about an axis joining two opposite vertices,
- (iii) $S_{n/2+1}, S_{n/2+2}, \ldots, S_n$ where $S_{n/2+i}$ is a rotation about an axis joining the midpoints of two opposite edges.

Solution: The group of symmetries consists of

- (i) $e = r_0, r_1, \ldots, r_9$ where r_i is rotation through $i\pi/5$,
- (ii) s_1, s_2, s_3, s_4, s_5 where s_i is a rotation about an axis joining two opposite vertices,
- (iii) t_1, t_2, t_3, t_4, t_5 where t_i is a rotation about an axis joining the midpoints of two opposite edges.

π	e	r_1	r_2				r_6		r_8	r_9	s_i	t_i
$\operatorname{ct}(\pi)$	x_1^{10}	x_{10}	x_{5}^{2}	x_{10}	x_{5}^{2}	x_{2}^{5}	x_{5}^{2}	x_{10}	x_{5}^{2}	x_{10}	$x_1^2 x_2^4$	x_{2}^{5}

Thus

$$PI = \frac{1}{20}((b+w)^{10} + 4(b^{10} + w^{10}) + 4(b^5 + w^5)^2 + 5(b+w)^2(b^2 + w^2)^4 + 6(b^2 + w^2)^5).$$