21-301 Combinatorics Homework 8 Due: Friday, November 9

1. Suppose we 2-color the edges of K_n Red and Blue. Let r_i be the Red degree of vertex $i, i \in [n]$. (This is the degree of i in the graph induced by the Red edges).

Show that there are exactly $\binom{n}{3} - \frac{1}{2} \sum_{i=1}^{n} r_i (n-1-r_i)$ mono-chromatic triangles.

Show that if n = 6 then there are at least two monochromatic triangles.

Solution: There are $r_i(n-1-r_i)$ pairs j, k such that ij is Red and ik is Blue. Each triangle that is not mono-chromatic gives rise to two such pairs. Each pair uniquely determines the triangle it is in. So half the sum is the number of non-mono-chromatic triangles.

Now if n = 6, $r(5 - r) \le 6$ for integer r. Hence the sum is at most $6 \times 6 = 36$ and the number of mono-chromatic triangles is at least 20-18=2.

2. Suppose that $a, b \ge 1$ and the edges of K_{a+b} are colored Red and Blue. Show that at least one of the following exists: (i) a vertex of Red degree $\ge a$; (ii) a Blue path of length $\ge b$.

(Hint: Assume there is no vertex of Red degree a)

Solution: Suppose that every vertex has Red-degree $\langle a$. Then every vertex has Blue-degree $\geq a + b - 1 - (a - 1) = b$. Now let $P = (1 = x_1, x_2, \ldots, x_s)$ be a longest Blue path starting at vertex 1. x_s has no neighbours outside P, else P can be extended to a longer path. So $s - 1 \geq b$ and P has length $\geq b$.

3. Suppose we 2-color the edges of K_n , $n \ge 3$, Red and Blue. Show that at least one of the following exists: (i) a vertex of Red degree $\ge \lfloor n/2 \rfloor - 1$; (ii) a blue triangle.

Solution: Suppose that every vertex has Red-degree $< \lfloor n/2 \rfloor - 1$. Then every vertex has Blue-degree $\ge n - 1 - (\lfloor n/2 \rfloor - 2) = \lceil n/2 \rceil + 1$. Let uand v be joined by a Blue edge. Let X_v (resp. X_u) be the set of Blue neighbors of u (resp. v). Then $|X_u \cap X_v| \ge 2(\lceil n/2 \rceil + 1) - n \ge 2$. So, $\boldsymbol{u},\boldsymbol{v}$ have a common Blue neighbor and this forms a Blue triangle with $\boldsymbol{u},\boldsymbol{v}.$