21-301 Combinatorics Homework 7 Due: Friday, November 2

- Prove that if n is odd then for any permutation π of [n], the product P(π) = (1 − π(1))(2 − π(2))...(n − π(n)) is necessarily even.
 Solution: Let n = 2m+1. Place 1, 3, 5, ..., 2m+1 into boxes B₁, B₃, B₅, ..., B_{2m+} Also, if π(j) = k is odd, place another copy of k into box B_j. In this way we place 2m + 2 objects into 2m + 1 boxes. So there is a box j with two numbers j and π(j) = k where j, k are both odd. Then j − k is even and so is the product P(π).
- 2. Suppose that $A \subseteq [n]$, |A| = m and $2^m > mn$. Prove that it is possible to select disjoint non-empty subsets $S, T \subseteq A$ whose members have the same sum.

Solution: Fix S and for $T \subseteq S$ let $a_T = \sum_{a \in T} a$. The integers a_T satisfy $\binom{m+1}{2} \leq a_T \leq mn - \binom{m}{2}$ and since there are 2^m of them, by the pigeon-hole principle, there exist distinct T_1, T_2 such that $a_{T_1} = a_{T_2}$. Now let $X = T_1 \cap T_2$ and $A = T_1 \setminus X$, $B = T_2 \setminus X$. Then A, B satisfy the requested conditions.

3. Given any sequence of n integers, positive or negative, not necessarily all different, show that some consecutive subsequence has the property that the sum of the members of the subsequence is a multiple of n.

Solution Let the sequence be x_1, x_2, \ldots, x_n and let $s_i = x_1 + \cdots + x_i$ mod n for $i = 1, 2, \ldots, n$. If there exists i with $s_i = 0$ then n divides $x_1 + \cdots + x_i$. Otherwise, s_1, s_2, \ldots, s_n all take values in [n-1]. By the pigeon-hole principle, there exist i < j such that $s_i = s_j$ and then ndivides $x_{i+1} + \cdots + x_j$.