21-301 Combinatorics Homework 6 Due: Monday, October 22

1. Let $s \ge 1$ be fixed. Let \mathcal{A} be a family of subsets of [n] such that **there** do not exist distinct $A_1, A_2, \ldots, A_{s+1}$ such that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{s+1}$. Show that

$$\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \le s.$$

- 2. Let G = (V, E) be an *r*-regular graph with *n* vertices. $S \subseteq V$ is a dominating set if $w \notin S$ implies that there exists $v \in S$ for which $\{v, w\} \in E$. Show, by the probabilistic method, that G has a dominating set of size at most $\frac{1+\ln r}{r}n$.
- 3. Let G = (V, E) be a graph with kn vertices. Show, by the probabilistic method, that there is a partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$ with $|V_i| = n$, $i = 1, 2, \ldots, k$ such that at most |E|/k of the edges of G have both of their endpoints in the same part of the partition.