Department of Mathematical Sciences CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 3: Due Monday Octobdber 22.

 $\mathbf{Q1}$

Solve the following 2-person zero-sum games:

				2	1	1	0	-1
6	2	4]	4	3	2	1	-1
5	2	5		1	1	0	-1	1
4	1	-3		2	1	1	-2	-2
-		-	-	4	1	0	-2	-3

Solution (2,2) is a saddle point for the first game. Thus the solution is for player A to use 1 and player B to use 2. The value of the game is 2. For the second game we have the following sequence of row/column removals because of domination:

Remove column strategy 1.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Remove column strategy 2.	$\left[\begin{array}{rrrrr} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & -2 & -2 \\ 0 & -2 & -3 \end{array}\right]$
Remove column strategy 3	$\begin{bmatrix} 0 & -1 \\ 1 & -1 \\ -1 & 1 \\ -2 & -2 \\ -2 & -3 \end{bmatrix}.$

Remove row strategy 1.	$\begin{bmatrix} 1\\ -1\\ -2\\ -2 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 1 \\ -2 \\ -3 \end{bmatrix}$
Remove row strategy 4.	$\begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix}$	-1 1 -3
Remove row strategy 5.	$\left[\begin{array}{c}1\\-1\end{array}\right]$	$\begin{bmatrix} -1\\1 \end{bmatrix}$

The optimal strategies for this game are for player A to play rows 2 and 3 with probability 1/2 each. Similarly, player B plays columns 4 and 5 with probability 1/2 each.

$\mathbf{Q2}$

Players A and B choose integers i and j respectively from the set $\{1, 2, ..., n\}$ for some $n \ge 2$. Player A wins if |i - j| = 1. Otherwise there is no payoff. Solve the game.

Solution: Let M_n be the matrix of payoffs.

$$M_{9} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Now row 1 is dominated by row 3 and so let $M_n^{(1)}$ be the matrix obtained by deleting row 1 from M_n .

$$M_{9}^{(1)} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Now column 1 dominates column 3 and so we remove column 3 to obtain $M_n^{(2)}$.

$$M_{9}^{(2)} = \left[\begin{array}{cccccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right]$$

Now column 2 dominates column 3 and so we remove column 3 to obtain $M_n^{(3)}$.

$$M_{9}^{(3)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Now row 3 is dominated by row 5 and row 4 is dominated by row 6 and so

we remove them to obtain $M_n^{(4)}$.

$$M_9^{(4)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

We see that now in general, if $n \ge 8$,

$$M_n^{(4)} = \begin{bmatrix} I_2 & O_{2,n-4} \\ O_{n-5,2} & M_{n-4}^{(1)} \end{bmatrix}$$

where where I_k is the $k \times k$ identity matrix and $O_{k,l}$ is the $k \times l$ matrix of zero's.

We check that for $k \leq 7$:

$$M_7^{(1)}$$
 reduces to I_4
 $M_6^{(1)}$ reduces to I_4
 $M_5^{(1)}$ reduces to I_3
 $M_4^{(1)}$ reduces to I_2
 $M_3^{(1)}$ reduces to I_2
 $M_2^{(1)}$ reduces to I_2
 $M_1^{(1)}$ reduces to I_1

It follows inductively, that dominance reduces the matrix $M_n^{(1)}$ to I_{2k+l} where $k = \lfloor n/4 \rfloor$ and $l = 1 + 1_{n \neq 1 \mod 4}$. A game with playoff matrix I_s has a solution where each player plays each choice with probability s^{-1} . Q3

Player B chooses a number $j \in \{1, 2, ..., n\}$ and A tries to guess what it is. If A guesses correctly then A wins 1. If A guesses too high then A loses 1. If A guesses too low there is no payoff. Solve the game. **Solution:** Let A_n be the matrix of the game. For example,

The matrix A_n is non-singular. These games are discussed in my notes, on

The matrix A_n is non-singular. These games are discussed in my notes, on the last page. Let $\mathbf{1}_n$ be the $n \times 1$ matrix $[1, 1, \dots, 1]^T$. Now the solution to $A_n y = \mathbf{1}_n$ is given by $y_j = 2^{j-1}$ and is non-negative. Thus $y_1 + \dots + y_n = 2^n - 1$. So we put $q_j = \frac{2^{j-1}}{2^n - 1}$. The solution to $x^T A = \mathbf{1}_n^T$ is given by $x_i = 2^{n-i}$ and is non-negative. Thus $x_1 + \dots + x_n = 2^n - 1$. So we put $p_i = \frac{2^{n-i}}{2^n - 1}$. The vectors p, q solve the game. This follows from the notes. One can check

that they solve the dual pair of linear programs associated with the game.