21-301 Combinatorics Homework 8 Due: Wednesday, November 8

1. Let $s \ge 1$ be fixed. Let \mathcal{A} be a family of subsets of [n] such that **there** do not exist distinct $A_1, A_2, \ldots, A_{s+1}$ such that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{s+1}$. Show that

$$\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \le s.$$

Solution Let π be a permutation of [n] and for $A \in \mathcal{A}$ let

$$1_{A} = \begin{cases} 1 & if \ \{\pi(1), \pi(2), \dots, \pi(|A|)\} = A \\ 0 & otherwise \end{cases}$$

Our condition ensures that for all π ,

$$\sum_{A \in \mathcal{A}} 1_A \le s.$$

Now let π be a random permutation. Then

$$s \ge \mathbf{E}\left(\sum_{A \in \mathcal{A}} 1_A\right) = \sum_{A \in \mathcal{A}} \mathbf{E}(1_A) = \sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}}.$$

2. Suppose that $2^m > mn - {m \choose 2} + 1$ and S, |S| = m is a subset of [n]. Show that there exist distinct $A, B \subseteq S$ such that (i) $A \cap B = \emptyset$ and (ii) $\sum_{a \in A} a = \sum_{b \in B} b$.

Solution Fix S and for $T \subseteq S$ let $a_T = \sum_{a \in T} a$. The integers a_T satisfy $0 \leq a_T \leq mn - {m \choose 2}$ and since there are 2^m of them, by the pigeonhole principle, there exist distinct T_1, T_2 such that $a_{T_1} = a_{T_2}$. Now let $X = T_1 \cap T_2$ and $A = T_1 \setminus X$, $B = T_2 \setminus X$. Then A, B satisfy the requested conditions.

3. Given any sequence of n integers, positive or negative, not necessarily all different, show that some consecutive subsequence has the property that the sum of the members of the subsequence is a multiple of n.

Solution Let the sequence be x_1, x_2, \ldots, x_n and let $s_i = x_1 + \cdots + x_i$ mod n for $i = 1, 2, \ldots, n$. If there exists i with $s_i = 0$ then n divides $x_1 + \cdots + x_i$. Otherwise, s_1, s_2, \ldots, s_n all take values in [n-1]. By the pigeon-hole principle, there exist i < j such that $s_i = s_j$ and then ndivides $x_{i+1} + \cdots + x_j$.