21-301 Combinatorics Homework 8 Due: Wednesday, November 8

1. Let $s \ge 1$ be fixed. Let \mathcal{A} be a family of subsets of [n] such that **there** do not exist distinct $A_1, A_2, \ldots, A_{s+1}$ such that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{s+1}$. Show that

$$\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \le s.$$

- 2. Suppose that $2^m > mn {m \choose 2} + 1$ and S, |S| = m is a subset of [n]. Show that there exist distinct $A, B \subseteq S$ such that (i) $A \cap B = \emptyset$ and (ii) $\sum_{a \in A} a = \sum_{b \in B} b$.
- 3. Given any sequence of n integers, positive or negative, not necessarily all different, show that some consecutive subsequence has the property that the sum of the members of the subsequence is a multiple of n.