21-301 Combinatorics Homework 7 Due: Wednesday, November 1

- 1. A tree T has exactly one vertex of degree i for each $2 \leq i \leq m$ and all other vertices are of degree one. How many vertices does T have? Justify your answer.
- 2. Let A_1, A_2, \ldots, A_n be *n* distinct subsets of [n]. Show that there is an element $x \in [n]$ such that all of the sets $A_i \setminus \{x\}$ are also distinct. Hint: Consider the graph *G* with vertices A_1, A_2, \ldots, A_n and an edge $\{A_i, A_j\}$ with "colour" *x* whenever $A_i \oplus A_j = \{x\}$. Prove that in any cycle of *G*, each colour appears an even number of times. Deduce that one can delete edges of *G* so that no cycles are left and the number of colours remains the same.
- 3. Show that a sequence (d_1, d_2, \ldots, d_n) of positive integers is the degree sequence of a tree if and only if $\sum_{i=1}^n d_i = 2(n-1)$.