
21-301 Combinatorics
Homework 1

Due: Wednesday, September 13
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[Hint: Differentiate the expression in the binomial theorem and then put in a suitable
value for x.]

Solution: Differentiating,
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Putting x = 1/n we get
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Dividing through by n gives the answer.

2. Show that for a fixed k,
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[Hint: Expand (1+x+y)n using the multinomial theorem. Then put y = 1 and extract
the coefficient of xk in what remains.]

Solution: From the multinomial theorem
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Putting y = 2 we get
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But
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and so we obtain (1).



3. Find an expression for the size of the set

{(x1, x2 . . . , xm)} ∈ Zm : x1 + x2 + · · · + xm = n and 0 ≤ xj ≤ a for j = 1, 2, . . . ,m}.

[You should use Inclusion-Exclusion and expect to have your answer as a sum.]

Solution: Let

A = {(x1, x2 . . . , xm) ∈ Zm : x1 + x2 + · · · + xm = n and 0 ≤ xj for j = 1, 2, . . . ,m}.

Let
Ai = {(x1, x2 . . . , xm) ∈ A : xi ≥ a + 1}

for i = 1, 2, . . . ,m.

We are asked for the size of

m
⋂
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Now for S ⊆ [m],

|AS| =

|{(x1, x2 . . . , xm) ∈ A : xi ≥ a + 1, i ∈ S}| =

|{(y1, y2 . . . , ym) ∈ Zm : y1 + x2 + · · · + ym = n − (a + 1)|S| and 0 ≤ yj for j = 1, 2, . . . ,m} =
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.

So, the size of the set in question is
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