21-301 Combinatorics Homework 9 Due: Monday, November 14

1. Prove that if we 2-color the edges of K_n then either (i) there is a vertex of Red degree at least $\frac{n}{2} - 1$ or (ii) there is a Blue triangle. Show also that it is possible to have a 2-coloring in which the maximum Red degree is $\frac{n}{2} - 1$ and in which there is no Blue triangle.

Solution If there is no vertex of Red degree $\geq \frac{n}{2} - 1$ then every vertex has minimum Blue degree $\geq \frac{n}{2} + 1$. Thus the number of Blue edges is greater than $\frac{n^2}{4}$ and so by Turan's Theorem (Graph Theory Notes p60) there is a Blue triangle.

Alternative proof Let (u, v) be a Blue edge. Both u, v have at least $\frac{n}{2}$ Blue neighbors outside u, v. This means they have a common Blue neighbor.

If n = 2m we can split the vertex set [n] into two sets A, B of size m. Then if we color edges inside A or inside B Red and edges between A, BBlue then *every* vertex has Red degree $\frac{n}{2}-1$ and there is no Blue triangle.

2. Prove that if we 2-color the edges of K_6 then there are least *two* monochromatic triangles.

Solution Assume w.l.o.g. that triangle (1, 2, 3) is Red and that (4, 5, 6) is not Red and in particular that edge (4, 5) is Blue. If x = 4, 5 or 6 then there can be at most one Red edge joining x to 1, 2, 3, else we get a Red triangle. So we can assume that there are two Blue edges joining each of 4, 5 to 1, 2, 3. So there must be $x \in \{1, 2, 3\}$ such that both (x, 4) and (x, 5) are Blue. But then triangle (x, 4, 5) is Blue.

Alternative proof Given the coloring, let us count the number N of paths of length two which consist of a Red edge followed by a Blue edge. Let r_i denote the number of Red edges incident with i. Then we have

$$N = \sum_{i=1}^{6} r_i (6 - r_i) \le \sum_{i=1}^{6} 6 = 36.$$

Each of the 20 triangles of K_6 contains 0 or 2 of these paths. So at most 18 contain 2 and there are at least 2 mono-colored triangles.

3. Prove that if $n \ge R(2k, 2k)$ and if we 2-color the edges of $K_{n,n}$ then there is a mono-chromatic copy of $K_{k,k}$.

Solution Given a coloring σ of $K_{n,n}$ we construct a coloring τ of the edges of K_n as follows. If i < j then we give the edge (i, j) of K_n the same color that is given to edge (i, j) under σ .

Since $n \geq R(2k, 2k)$ we see that K_n contains a mono-colored copy of K_{2k} . If the set of vertices of this copy is S, divide S into two parts S_1, S_2 of size k where max $S_1 < \min S_2$. It follows that the bipartite sub-graph of $K_{n,n}$ defined by S_1, S_2 is mono-colored under σ .