21-301 Combinatorics Homework 7 Due: Monday, November 8

1. Let $s \geq 1$ be fixed. Let $\mathcal{A} \subseteq \mathcal{P}_n$ be such that **there do not exist** distinct $A_1, A_2, \ldots, A_{s+1}$ such that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{s+1}$. Show that

$$\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \le s.$$

Solution Let π be a permutation of [n] and for $A \in \mathcal{A}$ let

$$1_{A} = \begin{cases} 1 & if \ \{\pi(1), \pi(2), \dots, \pi(|A|)\} = A \\ 0 & otherwise \end{cases}$$

Our condition ensures that for all π ,

$$\sum_{A \in \mathcal{A}} 1_A \le s.$$

Now let π be a random permutation. Then

$$s \geq \mathbf{E}\left(\sum_{A \in \mathcal{A}} 1_A\right) = \sum_{A \in \mathcal{A}} \mathbf{E}(1_A) = \frac{1}{\binom{n}{|A|}}.$$

2. Show that if $n \ge 1$ and $S \subseteq [2n]$ and $|S| \ge n+1$ then there exist distinct $a, b \in S$ such that a divides b.

Solution Positive integer *i* can be expressed $i = 2^k j$ for some $k \ge 0$ and odd *j*. Put *i* into box *j* and note that the numbers $1, 2, \ldots, 2n$ occupy the *n* boxes corresponding to $1, 3, \ldots, 2n - 1$. By the pigeon-hole principle, *S* contains two numbers which go into the same box.

3. Let $m = n^4 + 1$. Given two sequences a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_m of real numbers, show that there exist $i_1, i_2, \ldots, i_{n+1}$ such that both subsequences $a_{i_1}, a_{i_2}, \ldots, a_{i_{n+1}}$ and $b_{i_1}, b_{i_2}, \ldots, b_{i_{n+1}}$ are monotone.

Here we do not insist that both are monotone increasing or both are monotone decreasing, so one can be increasing and the other decreasing. **Solution** It follows from the Erdős-Szekeres Theorem that there exist $i_1, i_2, \ldots, i_{n^2+1}$ such that $a_{i_1}, a_{i_2}, \ldots, a_{i_{n^2+1}}$ is a monotone sequence. It follows from the Erdős-Szekeres Theorem that $b_{i_1}, b_{i_2}, \ldots, b_{i_{n^2+1}}$ contains a monotone subsequence of length n + 1. If the corresponding indices are $j_1, j_2, \ldots, j_{n+1}$ then $a_{j_1}, a_{j_2}, \ldots, a_{j_{n+1}}$ and $b_{j_1}, b_{j_2}, \ldots, b_{j_{n+1}}$ are both monotone.