21-301 Combinatorics Homework 8 Due: Monday, November 7

1. Let $s \ge 1$ be fixed. Let $\mathcal{A} \subseteq \mathcal{P}_n$ be such that **there do not exist** distinct $A_1, A_2, \ldots, A_{s+1}$ such that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{s+1}$. Show that

$$\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \le s.$$

- 2. Show that if $n \ge 1$ and $S \subseteq [2n]$ and $|S| \ge n+1$ then there exist distinct $a, b \in S$ such that a divides b.
- 3. Let $m = n^4 + 1$. Given two sequences a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_m of real numbers, show that there exist $i_1, i_2, \ldots, i_{n+1}$ such that both subsequences $a_{i_1}, a_{i_2}, \ldots, a_{i_{n+1}}$ and $b_{i_1}, b_{i_2}, \ldots, b_{i_{n+1}}$ are monotone.

Here we do not insist that both are monotone increasing or both are monotone decreasing, so one can be increasing and the other decreasing.