21-301 Combinatorics Homework 4

Due: Monday, October 3

1. 3n distinguishable balls are independently randomly numbered with 1,2 or 3, each number being equally likely. What is the probability that there are n balls with number 1, and n balls with number 2 and n balls with number 3.

Solution The number of ways of choosing n + n + n balls of each color is $\binom{3n}{n,n,n}$. The number of ways of colouring the balls is 3^{3n} . Thus the probability is

$$\frac{\binom{3n}{n,n,n}}{3^{3n}}.$$

2. Let A_1, A_2, \ldots, A_m be subsets of A and $|A_i| = n$. Show that if $m < \frac{4^{n-1}}{3^n}$ then there is a way of coloring A with 4 colors so that each color appears at least once in each set.

Solution Let $\mathcal{E}_{i,j}$ be the event that color j is not used on A_i and let $\mathcal{E}_i = \bigcup_{j=1}^4 \mathcal{E}_{i,j}$ denote the event that E_i is colored with fewer than 4 colors. Then

$$\Pr(\mathcal{E}_i) \le \sum_{j=1}^4 \Pr(\mathcal{E}_{i,j}) = 4 \left(\frac{3}{4}\right)^n.$$

Thus,

$$\Pr\left(\bigcup_{i=1}^{m}\Pr(\mathcal{E}_{i})\right) \leq 4m\left(\frac{3}{4}\right)^{n} < 1$$

and so there is a coloring for which none of the \mathcal{E}_i occur.

3. Let s_1, s_2, \ldots, s_m be binary strings such that no string is a prefix of another string.

 $(a = a_1 a_2 \cdots a_p \text{ is a prefix of } b = b_1 b_2 \cdots b_q \text{ if } p \leq q \text{ and } a_i = b_i \text{ for } 1 \leq i \leq p).$

Show that

$$\sum_{i=1}^{m} 2^{-|s_i|} \le 1$$

where |s| is the length of string s.

(Hint: Let $n = \max\{|s_1| : 1 \le i \le n\}$. Let x be a random binary string of length n. Consider the events $\mathcal{E}_i = \{s_i \text{ is a prefix of } x.\}$

Solution The events \mathcal{E}_i of the hint are *disjoint*. This follows from the assumption that no string is a prefix of another. Thus

$$1 \ge \sum_{i=1}^{m} \Pr(\mathcal{E}_i) = \sum_{i=1}^{m} 2^{-|s_i|}.$$