Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2005: Test 1

Name:		
mame.		

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts) Let a, m, n, p be positive integers. How many integer solutions are there to

$$x_1 + x_2 + \dots + x_m = n$$

which satisfy $x_i \ge a$ for i = 1, 2, ..., p and $x_i \ge 0$ for i = p + 1, p + 2, ..., m.

Q2: (33pts) Use the inclusion-exclusion formula

$$\left|\bigcap_{i=1}^{N} \overline{A}_i\right| = \sum_{S \subseteq [N]} (-1)^{|S|} |A_S|$$

to show that the number of permutations $\pi(1), \pi(2), \dots, \pi(n)$ of [n] which satisfy $\pi(i+1) \neq \pi(i) + 1$ for $i = 1, 2, \dots, n-1$ is

$$\sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} (n-k)!.$$

Q3: (34pts) The sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies the following: $a_0 = 1, \ a_1 = 4$ and

$$a_n - 4a_{n-1} + 4a_{n-2} = 0$$

for $n \geq 2$.

Determine the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and hence find a_n .