
Combinatorial Analysis 21-301: Fall 2003
Homework.
HW9 due Friday 11/7/2003

Q1: Let A be a 0-1 m × n matrix. If S ⊆ [n] then AS is the m × |S| sub-
matrix whose columns are the columns Ai, i ∈ S. A is said to be k-universal
if every set S of k columns has the following property: Every vector in {0, 1}k

appears as a row of AS.
Show that if
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matrix.
Solution For S ⊆ [n], |S| = k and x ∈ {0, 1}k let ES,x be the event that the
matrix AS does not contain a row equal to x. Then
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Q2: Let p = (1 + ε) log n
n

where ε > 0 is constant. Show that whp Gn,p is
2-connected. (A graph is k-connected if removing any k − 1 or less vertices
leaves it connected.)
Solution We already know from class that Gn,p is connected whp. For
S ⊆ [n], 1 ≤ |S| ≤ n/2 and v ∈ [n]\S let ES,v be the event that S is adjacent
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to v and S is a component of Gn,p − v. Then

Pr(Gn,p is connected and not 2-connected)
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∑
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