
Combinatorial Analysis 21-301: Fall 2003
Homework.
HW6 due Monday 10/13/2003

Q1: How many sequences x = x1x2 · · · xn ∈ {a, b, c}n are there for which
there is no i such that xixi+1 = ab?
[ Hint: The number of k-subsets of [n − 1] with no consecutive elements is
(

n−k
k

)

. We put down n − 1 − k markers and then place the k elements into
the gaps, including the ends. ]
Solution Let

Ai = {x : xixi+1 = ab}, 1 ≤ i ≤ n − 1.

The question asks for
∣
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∣

∣. To apply inclusion-exclusion we need to
find |AS|, for S ⊆ [n − 1]. Now AS = ∅ if S contains a pair of consectitive
elements j, j + 1, otherwise |AS| = 3n−2|S|. So,
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where νk is the number of k-subsets of [n− 1] with no consecutive elements.
This number is given in the hint. So the answer to the question is
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Q2: How many symmetric n × n 0-1 matrices are there in which every row
has at least one non-zero?
Solution Let Ai be the set of n× n 0-1 matrices in which row i and column
i are all zero. The question asks for
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∣

∣. To apply inclusion-exclusion

we need to find |AS|, for S ⊆ [n]. But |AS| = 2(n−|S|)(n−|S|+1)/2 and so the
answer to the question is
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2(n−k)(n−k+1)/2.
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