
## Combinatorial Analysis 21-301: Fall 2003 Homework. HW10 due Monday 11/24/2003

Q1: In Empty and Divide there are two boxes. Initially, one box contains m chips and the other contains n chips. Such a position is denoted by (m, n) where m > 0 and n > 0. A move consists of emptying one of the boxes and dividing the contents of the other between the two boxes with at least one chip in each box. There is a unique terminal position, namely (1,1). The last player to move wins. Determine which positions are P-positions and which positions are N-positions and how to win the game from an N-position.

**Solution** (m, n) is a P-position iff both of m and n are odd. To see this observe that the unique sink (1, 1) satisfies this condition. Then if both m and n are odd and  $(m, n) \neq (1, 1)$ , then the next move is to (m', n') where m' + n' is odd. So one of m', n' is even. Finally, if m say, is even then we can move to (m', n') where m' + n' = m and both m', n' are odd.

**Q2:** Analyse the following variant of Nim and then show that Rims below is this game in disguise. After removing chips from a pile, a player can if so desired, split the remainder of the pile into two sets. The winner is still the player that takes the last chip.

**Rims** A position in the game of Rims is a finite set of dots in the plane, possibly separated by non-intersecting closed curves. A move consists of drawing a closed curve through any positive number of dots but not touching any other curve. Players alternate moves and the last to move wins.



**Solution** If the number of chips in each pile is  $x = (x_1, x_2, ..., x_n)$  then we can still take  $g(x) = x_1 \oplus x_2 \oplus \cdots \oplus x_n$ . This is because if g(x) = 0 and a move creates x' then  $g(x') \neq 0$ . Also, if  $g(x) \neq 0$  then there is a regular Nim move to x' with g(x') = 0.

Finally, imagine cutting around the curves and letting the plane fall to pieces. The dots on a piece represent a pile and drawing a curve through points is equivalent to deleting a set of chips. The inside and outside of the curve represent the partition into two sub-piles.