
Polya’s Theory of Counting

Example 1 A disc lies in a plane. Its centre is fixed but it is free to rotate. It has been divided into
n sectors of angle 2π/n. Each sector is to be coloured Red or Blue. How many different colourings
are there? One could argue for 2n. On the other hand, what if we only distinguish colourings
which cannot be obtained from one another by a rotation. For example if n = 4 and the sectors are
numbered 0,1,2,3 in clockwise order around the disc, then there are only 6 ways of colouring the
disc – 4R, 4B, 3R1B, 1R3B, RRBB and RBRB.

Example 2 Now consider an n×n “chessboard” where n ≥ 2. Here we colour the squares Red and
Blue and two colourings are different only if one cannot be obtained from another by a rotation or
a reflection. For n = 2 there are 6 colourings.

The general scenario that we consider is as follows: We have a set X which will stand for the set
of colourings when transformations are not allowed. (In example 1, |X| = 2n and in example 2,

|X| = 2n2

). In addition there is a set G of permutations of X. This set will have a group structure:
Given two members g1, g2 ∈ G we can define their composition g1 ◦ g2 by g1 ◦ g2(x) = g1(g2(x)) for
x ∈ X. We require that G is closed under composiiton i.e. g1 ◦ g2 ∈ G if g1, g2 ∈ G. We also have
the following:

A1 The identity permutation 1X ∈ G.

A2 (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) (Composition is associative).

A3 The inverse permutation g−1 ∈ G for every g ∈ G.

(A set G with a binary relation ◦ which satisfies A1,A2,A3 is called a Group).

In example 1 D = {0, 1, 2, . . . , n − 1}, X = 2D and the group is G1 = {e0, e1, . . . , en−1} where
ej ∗ x = x + j mod n stands for rotation by 2jπ/n.

In example 2, X = 2[n]2 . We number the squares 1,2,3,4 in clockwise order starting at the upper left
and represent X as a sequence from {r, b}4 where for example rrbr means colour 1,2,4 Red and 3
Blue. G2 = {e, a, b, c, p, q, r, s} is in a sense independent of n. e, a, b, c represent a rotation through
0, 90, 180, 270 degrees respectively. p, q represent reflections in the vertical and horizontal and r, s
represent reflections in the diagonals 1,3 and 2,4 respectively. Now check the following table:

rrrr brrr rbrr rrbr rrrb bbrr rbbr rrbb brrb rbrb brbr bbbr bbrb brbb rbbb bbbb
e rrrr brrr rbrr rrbr rrrb bbrr rbbr rrbb brrb rbrb brbr bbbr bbrb brbb rbbb bbbb
a rrrr rbrr rrbr rrrb brrr rbbr rrbb brrb bbrr brbr rbrb rbbb bbbr bbrb brbb bbbb
b rrrr rrbr rrrb brrr rbrr rrbb brrb bbrr rbbr rbrb brbr brbb rbbb bbbr bbrb bbbb
c rrrr rrrb brrr rbrr rrbr brrb bbrr rbbr rrbb brbr rbrb bbrb brbb rbbb bbbr bbbb
p rrrr rbrr brrr rrrb rrbr bbrr brrb rrbb rbbr brbr rbrb bbrb bbbr brbb brbb bbbb
q rrrr rrrb rrbr rbrr brrr rrbb rbbr bbrr brrb brbr rbrb rbbb brbb bbrb bbbr bbbb
r rrrr brrr rrrb rrbr rbrr brrb rrbb rbbr bbrr rbrb brbr brbb bbrb bbbr rbbb bbbb
s rrrr rrbr rbrr brrr rrrb rbbr bbrr brrb rrbb rbrb brbr bbbr rbbb brbb bbrb bbbb

From now on we will write g ∗ x in place of g(x).

Orbits: If x ∈ X then its orbit Ox = {y ∈ X : ∃g ∈ G such that g ∗ x = y}.

Lemma 1. The orbits partition X.
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Proof x = 1X ∗ x and so x ∈ Ox and so X =
⋃

x∈X Ox.

Suppose now that Ox ∩Oy 6= ∅ i.e. ∃g1, g2 such that g1 ∗x = g2 ∗y. But then for any g ∈ G we have

g ∗ x = (g ◦ (g−1
1 ◦ g2)) ∗ y ∈ Oy

and so Ox ⊆ Oy. Similarly Oy ⊆ Ox. Thus Ox = Oy whenever Ox ∩ Oy 6= ∅. 2

The two problems we started with are of the following form: Given a set X and a group of permu-
tations acting on X, compute the number of orbits i.e. distinct colourings.

A subset H of G is called a sub-group of G if it satisfies axioms A1,A2,A3 (with G replaced by H).

The stabilizer Sx of the element x is {g : g ∗ x = x}. It is a sub-group of G.

Lemma 2.

If x ∈ X then |Ox| |Sx| = |G|.

Proof Fix x ∈ X and define an equivalence relation ∼ on G by

g1 ∼ g2 if g1 ∗ x = g2 ∗ x.

Let the equivalence classes be A1, A2, . . . , Am. We first argue that

|Ai| = |Sx| i = 1, 2, . . . ,m. (1)

Fix i and g ∈ Ai. Then

h ∈ Ai ↔ g ∗ x = h ∗ x. ↔ (g−1 ◦ h) ∗ x = x ↔ (g−1 ◦ h) ∈ Sx. ↔ h ∈ g ◦ Sx

where g ◦ Sx = {g ◦ σ : σ ∈ Sx}. Thus |Ai| = |g ◦ Sx|. But |g ◦ Sx| = |Sx| since if σ1, σ2 ∈ Sx and
g ◦ σ1 = g ◦ σ2 then g−1 ◦ (g ◦ σ1) = (g−1 ◦ g) ◦ σ1 = σ1 = g−1 ◦ (g ◦ σ2) = σ2. This proves (1).

Finally, m = |Ox| since there is a distinct equivalence class for each distinct g ∗ x. 2
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Examples:

In example 1 with n = 4 we have

x Ox Sx

rrrr {rrrr} G
brrr {brrr,rbrr,rrbr,rrrb} {e0}
rbrr {brrr,rbrr,rrbr,rrrb} {e0}
rrbr {brrr,rbrr,rrbr,rrrb} {e0}
rrrb {brrr,rbrr,rrbr,rrrb} {e0}
bbrr {bbrr,rbbr,rrbb,brrb} {e0}
rbbr {bbrr,rbbr,rrbb,brrb} {e0}
rrbb {bbrr,rbbr,rrbb,brrb} {e0}
brrb {bbrr,rbbr,rrbb,brrb} {e0}
rbrb {rbrb,brbr} {e0, e2}
brbr {rbrb,brbr} {e0, e2}
bbbr {bbbr,rbbb,brbb,bbrb} {e0}
bbrb {bbbr,rbbb,brbb,bbrb} {e0}
brbb {bbbr,rbbb,brbb,bbrb} {e0}
rbbb {bbbr,rbbb,brbb,bbrb} {e0}
bbbb {bbbb} G

In example 2 we have

x Ox Sx

rrrr {e} G
brrr {brrr,rbrr,rrbr,rrrb} {e,r}
rbrr {brrr,rbrr,rrbr,rrrb} {e,s}
rrbr {brrr,rbrr,rrbr,rrrb} {e,r}
rrrb {brrr,rbrr,rrbr,rrrb} {e,s}
bbrr {bbrr,rbbr,rrbb,brrb} {e,p}
rbbr {bbrr,rbbr,rrbb,brrb} {e,q}
rrbb {bbrr,rbbr,rrbb,brrb} {e,p}
brrb {bbrr,rbbr,rrbb,brrb} {e,q}
rbrb {rbrb,brbr} {e,b,r,s}
brbr {rbrb,brbr} {e,b,r,s}
bbbr {bbbr,rbbb,brbb,bbrb} {e,s}
bbrb {bbbr,rbbb,brbb,bbrb} {e,r}
brbb {bbbr,rbbb,brbb,bbrb} {e,s}
rbbb {bbbr,rbbb,brbb,bbrb} {e,r}
bbbb {e} G
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Let νX,G denote the number of orbits.

Theorem 1.

νX,G =
1

|G|

∑

x∈X

|Sx|.

Proof

νX,G =
∑

x∈X

1

|Ox|

=
∑

x∈X

|Sx|

|G|
,

from Lemma 2. 2

Thus in example 1 we have

νX,G =
1

4
(4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 1 + 1 + 1 + 4) = 6.

In example 2 we have

νX,G =
1

8
(8 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 4 + 4 + 2 + 2 + 2 + 2 + 8) = 6.

Theorem 1 is hard to use if |X| is large, even if |G| is small. For g ∈ G let Fix(g) = {x ∈ X :
g ∗ x = x}.

Theorem 2. (Frobenius, Burnside)

νX,G =
1

|G|

∑

g∈G

|Fix(g)|.

Proof Let A(x, g) = 1g∗x=x. Then

νX,G =
1

|G|

∑

x∈X

|Sx|

=
1

|G|

∑

x∈X

∑

g∈G

A(x, g)

=
1

|G|

∑

g∈G

∑

x∈X

A(x, g)

=
1

|G|

∑

g∈G

|Fix(g)|.

2

Let us consider example 1 with n = 6. We compute

g e0 e1 e2 e3 e4 e5

|Fix(g)| 64 2 4 8 4 2

Applying Theorem 2 we obtain

νX,G =
1

6
(64 + 2 + 4 + 8 + 4 + 2) = 14.
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Cycles of a permutation

Let π : D → D be a permutation of the finite set D. Consider the digraph Γπ = (D,A) where
A = {(i, π(i)) : i ∈ D}. Γπ is a collection of vertex disjoint cycles. Each x ∈ D being on a unique
cycle. Here a cycle can consist of a loop i.e. when π(x) = x.

Example: D = [10].

i 1 2 3 4 5 6 7 8 9 10
π(i) 6 2 7 10 3 8 9 1 5 4

The cycles are (1, 6, 8), (2), (3, 7, 9, 5), (4, 10).

In general consider the sequence i, π(i), π2(i), . . . ,. Since D is finite, there exists a first pair k < ` such
that πk(i) = π`(i). Now we must have k = 0, since otherwise putting x = πk−1(i) 6= y = π`−1(i)
we see that π(x) = π(y), contradicting the fact that π is a permutation. So i lies on the cycle
C = (i, π(i), π2(i), . . . , πk−1(i), i). If j is not a vertex of C then π(j) is not on C and so we can
repeat the argument to show that the rest of D is partitioned into cycles.

Example 1 First consider e0, e1, . . . , en−1 as permutations of D. The cycles of e0 are (1), (2), . . . , (n).
Now suppose that 0 < m < n. Let am = gcd(m,n) and km = n/am. The cycle Ci of em containing
the element i is is (i, i + m, i + 2m, . . . , i + (km − 1)m) since n is a divisor kmm and not a divisor of
k′m for k′ < km. In total, the cycles of em are C0, C1, . . . , Cam−1. This is because they are disjoint
and together contain n elements. (If i + rm = i′ + r′m mod n then (r − r′)m + (i − i′) = `n. But
|i − i′| < am and so dividing by am we see that we must have i = i′.)

Next observe that if colouring x is fixed by em then elements on the same cycle Ci must be coloured
the same. Suppose for example that the colour of i+ bm is different from the colour of i+(b+1)m,
say Red versus Blue. Then in em(x) the colour of i + (b + 1)m will be Red and so em(x) 6= x.
Conversely, if elements on the same cycle of em have the same colour then in x ∈ Fix(em). This
property is not peculiar to this example, as we will see.

Thus in this example we see that |Fix(em)| = 2am and then applying Theorem 2 we see that

νX,G =
1

n

n−1
∑

m=0

2gcd(m,n).

Example 2 It is straightforward to check that when n is even, we have

g e a b c p q r s

|Fix(g)| 2n2

2n2/4 2n2/2 2n2/4 2n2/2 2n2/2 2n(n+1)/2 2n(n+1)/2

For example, if we divide the chessboard into 4 n/2 × n/2 sub-squares, numbered 1,2,3,4 then a
colouring is in Fix(a) iff each of these 4 sub-squares have colourings which are rotations of the
colouring in square 1.

1 The pattern inventory

We now extend the above analysis to answer questions like: How many distinct ways are there to
colour an 8 × 8 chessboard with 32 white squares and 32 black squares?

5



The scenrio now consists of a set D (Domain, a set C (colours) and X = {x : D → C} is the set
of colourings of D with the colour set C. G is now a group of permutations of D.

We see first how to extend each permutation of D to a permutation of X. Suppose that x ∈ X and
g ∈ G then we define g ∗ x by

g ∗ x(d) = x(g−1(d)) for all d ∈ D.

Explanation: The colour of d is the colour of the element g−1(d) which is mapped to it by g.

Consider Example 1 with n = 4. Suppose that g = e1 i.e. rotate clockwise by π/2 and x(1) =
b, x(2) = b, x(3) = r, x(4) = r. Then for example

g ∗ x(1) = x(g−1(1)) = x(4) = r, as before.

Now associate a weight wc with each c ∈ C. If x ∈ X then

W (x) =
∏

d∈D

wx(d).

Thus, if in Example 1 we let w(r) = R and w(b) = B and take x(1) = b, x(2) = b, x(3) = r, x(4) = r
then we will write W (x) = B2R2.

For S ⊆ X we define the inventory of S to be

W (S) =
∑

x∈S

W (x).

The probelm we discuss now is to compute the pattern inventory PI = W (S∗) where S∗ contains
one member of each orbit of X under G.

For example, in the case of Example 2, with n = 2, we gt

PI = R4 + R3B + 2R2B2 + RB3 + B4.

To see that the definition of PI makes sense we need to prove

Lemma 3. If x, y are in the same orbit of X then W (x) = W (y).

Proof Suppose that g ∗ x = y. Then

W (y) =
∏

d∈D

wy(d)

=
∏

d∈D

wg∗x(d)

=
∏

d∈D

wx(g−1(d)) (2)

=
∏

d∈D

wx(d)) (3)

= W (x)

Note, that we can go from (2) to (3) because as d runs over D, g−1(d) also runs over d. 2

Let ∆ = |D|. If g ∈ G has ki cycles of length i then we define

ct(g) = xk1
1 xk2

2 · · ·xk∆

∆ .
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The Cycle Index Polynomial of G, CG is then defined to be

CG(x1, x2, . . . , x∆) =
1

|G|

∑

g∈G

ct(g).

In Example 2 with n = 2 we have

g e a b c p q r s
ct(g) x4

1 x4 x2
2 x4 x2

2 x2
2 x2

1x2 x2
1x2

and so

CG(x1, x2, x3, x4) =
1

8
(x4

1 + 3x2
2 + 2x2

1x2 + 2x4).

In Example 2 with n = 3 we have

g e a b c p q r s
ct(g) x9

1 x1x
2
4 x1x

4
2 x1x

2
4 x3

1x
3
2 x3

1x
3
2 x3

1x
3
2 x3

1x
3
2

and so

CG(x1, x2, x3, x4) =
1

8
(x9

1 + x1x
4
2 + 4x3

1x
3
2 + 2x1x

2
4).

Theorem 3. (Polya)

PI = CG

(

∑

c∈C

wc,
∑

c∈C

w2
c , . . . ,

∑

c∈C

w∆
c

)

.

In Example 2, we replace x1 by R + B, x2 by R2 + B2 and so on. When n = 2 this gives

PI =
1

8
((R + B)4 + 3(R2 + B2) + 2(R + B)2(R2 + B2) + 2(R4 + B4))

= R4 + R3B + 2R2B2 + RB3 + B4.

Putting R = B = 1 gives the number of distinct colourings. Note also the formula for PI tells us
that there are 2 distinct colourings using 2 reds and 2 Blues.

Proof of Polya’s Theorem

Let X = X1 ∪ X2 ∪ · · · ∪ Xm be the equivalence clases of X under the relation

x ∼ y iff W (x) = W (y).

By Lemma 3, g ∗x ∼ x for all x ∈ X, g ∈ G and so we can think of G acting on each Xi individually
i.e. we use the fact that x ∈ Xi implies g ∗ x ∈ Xi for all i ∈ [m], g ∈ G. We use the notation
g(i) ∈ G(i) when we restrict attention to Xi. Let mi denote the number of orbits νXi,G(i) . Then

PI =
m
∑

i=1

miWi

=

m
∑

i=1

Wi





1

|G|

∑

g∈G

|Fix(g(i))|



 by Theorem 2

=
1

|G|

∑

g∈G

m
∑

i=1

|Fix(g(i))|Wi

=
1

|G|

∑

g∈G

W (Fix(g)) (4)
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Note that (4) follows from Fix(g) =
⋃m

i=1 Fix(g(i)) since x ∈ Fix(g(i)) iff x ∈ Wi and g ∗ x = x.

Suppose now that ct(g) = xk1
1 xk2

2 · · ·xk∆

∆ as above. Then we claim that

W (Fix(g)) =

(

∑

c∈C

wc

)k1
(

∑

c∈C

w2
c

)k2

· · ·

(

∑

c∈C

w∆
c

)k∆

. (5)

Substituting (5) into (4) yileds the theorem.

To verify (5) we use the fact that if x ∈ Fix(g), then the elements of a cycle of g must be given the
same colour. A cycle of length i will then contribute a factor

∑

c∈C wi
c where the term wi

c comes
from the choice of colour c for every element of the cycle. 2
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