
Tic Tac Toe and extensions

We consider the following multi-dimensional version of Tic Tac Toe (Noughts and Crosses to the
English). The board consists of [n]d. A point on the board is therefore a vector (x1, x2, . . . , xd)
where 1 ≤ xi ≤ n for 1 ≤ i ≤ d.

A line is a set points (x
(1)
j , x

(2)
j , . . . , x

(d)
j ), j = 1, 2, . . . , n where each sequence x(i) is either (i) of

the form k, k, . . . , k for some k ∈ [n] or is (ii) 1, 2, . . . , n or is (iii) n, n− 1, . . . , 1. Finally, we cannot
have Case (i) for all i.

Thus in the (familiar) 3 × 3 case, the top row is defined by x(1) = 1, 1, 1 and x(2) = 1, 2, 3 and the
diagonal from the bottom left to the top right is defined by x(1) = 3, 2, 1 and x(2) = 1, 2, 3

Lemma 1. The number of winning lines in the (n, d) game is
(n+2)d−nd

2 .

Proof In the definition of a line there are n choices for k in (i) and then (ii), (iii) make it up
to n + 2. There are d independent choices for each i making (n + 2)d. Now delete nd choices where
only Case (i) is used. Then divide by 2 because replacing (ii) by (iii) and vice-versa whenever Case
(i) does not hold produces the same set of points (traversing the line in the other direction). 2

The game is played by 2 players. The Red player (X player) goes first and colours a point red.
Then the Blue player (0 player) colours a different point blue and so on. A player wins if there is
a line, all of whose points are that players colour. If neither player wins then the game is a draw.
The second player does not have a wnning strategy:

Lemma 2. Player 1 can always get at least a draw.

Proof We prove this by considering strategy stealing. Suppose that Player 2 did have a winning
strategy. Then Player 1 can make an arbitrary first move x1. player 2 will then move with y1. Player
1 will now win playing the winning strategy for Player 2 against a first move of y1. This can be
carried out until the strategy calls for move x1 (if at all). But then Player 1 can make an arbitrary
move and continue, since x1 has already been made. 2

0.1 Pairing Strategy
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6 2 2 9 10
3 7 ∗ 9 3
6 7 4 4 10
12 5 8 5 11
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The above array gives a strategy for Player 2 the 5 × 5 game (d = 2, n = 5). For each of the 12
lines there is an associated pair of positions. If Player 1 chooses a position with a number i, then
Player 2 responds by choosing the other cell with the number i. This ensures that Player 1 cannot
take line i. If Player 1 chooses the * then Player 2 can choose any cell with an unused number. So,
later in the game if Player 1 chooses a cell with j and Player 2 already has the other j, then Player
1 can choose an arbitrary cell. Player 2’s strategy is to ensure that after all cells have been chosen,
he/she will have chosen one of the numbered cells asociatded with each line. This prevents Player
1 from taking a whole line. This is called a pairing strategy.

We now generalise the game to the following: We have a family F = A1, A2, . . . , AN ⊆ A. A move
consists of one player, taking an uncoloured member of A and giving it his colour. A player wins if
one of the sets Ai is completely coloured with his colour.
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A pairing strategy is a collection of distinct elements X = {x1, x2, . . . , x2N−1, x2N} such that
x2i−1, x2i ∈ Ai for i ≥ 1. This is called a draw forcing pairing. Player 2 responds to Player
1’s choice of x2i+δ, δ = 0, 1 by choosing x2i+3−δ. If Player 1 does not choose from X, then Player
2 can choose any uncoloured element of X. In this way, Player 2 avoids defeat, because at the end
of the game Player 2 will have coloured at least one of each of the pairs x2i−1, x2i and so Player 1
cannot have completely coloured Ai for i = 1, 2, . . . , N .

Theorem 1. If
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≥ 2|G| ∀G ⊆ F (1)

then there is a draw forcing pairing.

Proof We define a bipartite graph Γ. A will be one side of the bipartition and B = {b1, b2, . . .
, b2N}. Here b2i−1 and b2i both represent Ai in the sense that if a ∈ Ai then there is an edge
(a, b2i−1) and an edge (a, b2i). A draw forcing pairing corresponds to a complete matching of B into
A and the condition (1) implies that Hall’s condition is satisfied. 2

Corollary 2. If |Ai| ≥ n for i = 1, 2, . . . , n and every x ∈ A is contained in at most n/2 sets of F
then there is a draw forcing pairing.

Proof The degree of a ∈ a is ≤ 2(n/2) in Γ and the degree of each b ∈ B is at least n. This
implies (via Hall’s condition) that there is a complete matching of B into A. 2

Consider Tic tac Toe when case d = 2. If n is even then every array element is in at most 3 lines
(one row, one colum and at most one diagonal) and if n is od then every array element is in at most
4 lines (one row, one colum and at most two diagonals). Thus there is a draw forcing pairing if
n ≥ 6, n even and if n ≥ 9, n odd. (The cases n = 4, 7 have been settled as draws. n = 7 required
the use of a computer to examine all possible strategies.

In general we have

Lemma 3. If n ≥ 3d − 1 and n is odd or if n ≥ 2d − 1 and n is even, then there is a draw forcing

pairing of (n, d) Tic tac Toe.

Proof We only have to estimate the number of lines through a fixed point c = (c1, c2, . . . , cd).
If n is odd then to choose a line L through c we specify, for each index i whether L is (i) constant
on i, (ii) increasing on i or (iii) decreasing on i. This gives 3d choices. Subtract 1 to avoid the all
constant case and divide by 2 becaus each line gets counted twice this way.

When even is even, we observe that once we have chosen in which positions L is constant, L is
determined. Suppose c1 = x and 1 is not a fixed position. Then every other non-fixed position is
x or n − x + 1. Asuning w.l.o.g. that x ≤ n/2 we see that x < n − x = 1 and the positions with
x increase together at the same time as the positions with n − x + 1 decrease together. Thus the
number of lines through c in this case is bounded by

∑d−1
i=0

(

d
i

)

= 2d − 1. 2

0.2 Quasi-probabilistic method

We now prove a theorem of Erdős and Selfridge.

Theorem 3. If |Ai| ≥ n for i ∈ [N ] and N < 2n−1, then Player 2 can get a draw in the game

defined by F .
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Proof At any point in the game, let Cj denote the set of elements in A which have been
coloured with Player j’s colour, j = 1, 2 and U = A \ C1 ∪ C2. Let

Φ =
∑

i:Ai∩C2=∅

2−|Ai∩U |.

Suppose that the players choices are x1, y1, x2, y2, . . . ,. Then we observe that immediately after
Player 1’s first move, Φ < N2−(n−1) < 1.

We will show that Player 2 can keep Φ < 1 through out. Then at the end, when U = ∅, Φ =
∑

i:Ai∩C2=∅ 1 < 1 implies that Ai ∩ C2 6= ∅ for all i ∈ [N ].

So, now let Φj be the value of Φ after the choice of x1, y1, . . . , xj . then if U,C1, C2 are defined at
precisely this time,

Φj+1 − Φj = −
∑

i:Ai∩C2=∅
yj∈Ai

2−|Ai∩U | +
∑

i:Ai∩C2=∅
yj /∈Ai,xj+1∈Ai

2−|Ai∩U |

≤ −
∑

i:Ai∩C2=∅
yj∈Ai

2−|Ai∩U | +
∑

i:Ai∩C2=∅
xj+1∈Ai

2−|Ai∩U |

We deduce that Φj+1 − Φj ≤ 0 if Player 2 chooses yj to maximise over y,
∑

i:Ai∩C2=∅
y∈Ai

2−|Ai∩U |.

In this way, Player 2 keeps Φ < 1 and obtains a draw. 2

In the case of (n, d) Tic Tac Toe, we see that Player 2 can force a draw if (see Lemma 1)

(n + 2)d − nd

2
< 2n−1

which is implied, for n large, by
n ≥ (1 + ε)d log2 d

where ε > 0 is a small positive constsnt.

3


