
Geography

Start with a chip sitting on a vertex v of a graph or digraph G.

A move consists of moving the chip to a neighbouring vertex. In edge geography, moving the chip
from x to y deletes the edge (x, y). In vertex geography, moving the chip from x to y deletes the
vertex x.

The problem is given a position (G, v), to determine whether this is a P or N position.

Complexity Both edge and vertex geography are Pspace-hard on digraphs. Edge geography is
Pspace-hard on an undirected graph. Only vertex geography on a graph is polynomial time solvable.

1 Undirected Vertex Geography – UVG

Theorem 1. (G, v) is an N-position in UVG iff every maximum matching of G covers v.

Proof (i) Suppose that M is a maximum matching of G which covers v. Player 1’s strategy is
now: Move along M-edge that contains current vertex.

If Player 1 were to lose, then there would exist a sequence of edges e1, f1, . . . , ek, fk such that v ∈ e1,
e1, e2, . . . , ek ∈ M , f1, f2, . . . , fk /∈ M and fk = (x, y) where y is the current vertex for Player 1 and
y is not covered by M . But then if A = {e1, e2, . . . , ek} and B = {f1, f2, . . . , fk} then (M \ A) ∪ B
is a maximum matching (same size as M) which does not cover v, contradiction.

(ii) Suppose now that there is some maximum matching M which does not cover v. Then if (v, w)
is Player 1’s move, w must be covered by M , else M is not a maximum matching. Player 2’s
strategy is now: Move along M-edge that contains current vertex. If Player 2 were to lose then
there exists e1 = (v, w), f1, . . . , ek, fk, ek+1 = (x, y) where y is the current vertex for Player 2 and y
is not covered by M . But then we have defined an augmenting path from v to y and so M is not a
maximum matching, contradiction. 2

Note that we can determine whether or not v is covered by all maximum matchings as follows: Find
the size σ of the maximum matching G. This can be done in O(n3) time on an n-vertex graph. Then
find the size σ′ of a maximum matching in G − v. Then v is covered by all maximum matchings of
G iff σ = σ′.

2 Undirected Edge Geography – UEG on a bipartite graph

An even kernel of G is a non-empty set S ⊆ V such that (i) S is an independent set and (ii) v /∈ S
implies that degS(v) is even, (possibly zero). (degS(v) is the number of neighbours of v in S.)

Lemma 1. If S is an even kernel and v ∈ S then (G, v) is a P-position in UEG.

Proof Any move at a vertex in S takes the chip outside S and then Player 2 can immediately
put the chip back in S. After a move from x ∈ S to y /∈ S, degS(y) will become odd and so there is
an edge back to S. making this move, makes degS(y) even again. Eventually, there will be no S : S̄
edges and Player 1 will be stuck in S. 2

We now discuss Bipartite UEG i.e. we assume that G is bipartite, G has bipartion consisting of a
copy of [m] and a disjoint copy of [n] and edges set E. Now consider the m × n 0-1 matrix A with
A(i, j) = 1 iff (i, j) ∈ E.
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We can play our game on this matrix: We are either positioned at row i or we are positioned at
column j. If say, we are positioned at row i, then we choose a j such that A(i, j) = 1 and (i) make
A(i, j) = 0 and (ii) move the position to column j. An analogous move is taken when we positioned
at column j.

Lemma 2. Suppose the current position is row i. This is a P-position iff row i is in the span of
the remaining rows (is the sum (mod 2) of a subset of the other rows). A similar statement can be
made if the position is column j.

Proof Assume the position is row 1 and there exists I ⊆ [m] such that 1 ∈ I and

r1 =
∑

i∈I\{1}

ri(mod 2) or
∑

i∈I

ri = 0(mod 2) (1)

where ri denotes row i.

I is an even kernel: If x /∈ I then either (i) x corresponds to a row and there are no x, I edges or
(ii) x corresponds to a column and then

∑
i∈I A(i, x) = 0(mod 2) from (1) and then x has an even

number of neighbours in I.

Now suppose that (1) does not hold for any I. We show that there exists a ` such that A(1, `) = 1
and putting A(1, `) = 0 makes column ` dependent on the remaining columns. Then we will be in
a P-position, by the first part.

Let e1 be the m-vector with a 1 in row 1 and a 0 everywhere else. Let A∗ be obtained by adding e1

to A as an (n + 1)th column. Now the row-rank of A∗ is the same as the row-rank of A (here we
are doing all arithmetic modulo 2). Suppose not, then if r∗i is the ith row of A∗ then there exists a
set J such that ∑

i∈J

ri = 0(mod 2) 6=
∑

i∈J

r∗i (mod 2).

Now 1 /∈ J because r1 is independent of the remaining rows of A, but then
∑

i∈J ri = 0(mod 2)
implies

∑
i∈J r∗i = 0(mod 2) since the last column has al zeros, except in row 1.

Thus rank A∗ = rank A and so there exists K ⊆ [n] such that

e1 =
∑

k∈K

ck(mod 2) or e1 +
∑

k∈K

ck = 0(mod 2) (2)

where ck denotes column k of A. Thus there exists ` ∈ K such that A(1, `) = 1. Now let c′j = cj

for j 6= ` and c′` be obtained from c` by putting A(1, `) = 0 i.e. c′` = c` + e1. But then (2) implies
that

∑
k∈K c′k = 0(mod 2). 2
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