
Sums of other subtraction games:

In our first example, g(x) = x mod 5 and so for the sum of n such games we have

g(x1, x2, . . . , xn) = (x1 mod 5) ⊕ (x2 mod 5) ⊕ · · · ⊕ (xn mod 5).

Another subtraction game.
One pile:

• A player can remove any even number of chips, but not the whole pile.

• A player can remove the whole pile if it is odd.

The terminal positions are 0 or 2.

Lemma 1. g(0) = 0, g(2k) = k − 1 and g(2k − 1) = k for k ≥ 1.

Proof 0,2 are terminal postions and so g(0) = g(2) = 0. g(1) = 1 because the only position
one can move to from 1 is 0. We prove the remainder by induction on k.

Assume that k > 1.

g(2k) = mex{g(2k − 2), g(2k − 4), . . . , g(2)}

= mex{k − 2, k − 3, . . . , 0}

= k − 1.

g(2k − 1) = mex{g(2k − 3), g(2k − 5), . . . , g(1), g(0)}

= mex{k − 1, k − 2, . . . , 0}

= k.
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A more complicated one pile game

Start with N chips. First player can remove up to N − 1 chips.

In general, if the previous player took x chips, then the next player can take y ≤ x chips.

Thus a games position can be represented by (n, x) where n is the current size of the pile and x is
the maximum number of chips that can be removed in this round.

We will use (n, ∗) to denote a starting position (instead of (n, n − 1)).

Lemma 2.

(a) (n, ∗) is an N-position if n is not a power of 2.

(b) (2k, ∗) is a P-position for all k ≥ 1.

Proof We prove the lemma by induction on n. One can easily verify it for n ≤ 4 say.

(a) Suppose that n = 2k + x where 0 < x < 2k. Then A removes x chips and leaves B in position
(2k, x). This is a P-position, since by induction B will lose when allowed to remove up to 2k −1 ≥ x
chips.

(b) Assume that the starting position is (2k+1, ∗). After the first move, the position will be (2k +
x, 2k − x), assuming that A chooses 2k − x chips.
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(i) If x ≤ 0 then B can win by removing all 2k + x ≤ 2k − x chips.

(ii) Assume x > 0. By induction there is a winning strategy for the second player after a move
from (2k, ∗) to (x, 2k − x). B can play this strategy and get A to face the position (2k, y) where
y ≤ 2k − x < 2k. By induction, A will lose from this position.

We should check that B will allow this to happen. But in following the winning strategy from (2k, ∗)
to (x, 2k − x) to (0, y), B when facing (y′, z′) will never choose w where y′ > w ≥ y′/2 for otherwise
B would lose when A took the remaining y′ − w chips. Thus A will never be able to reduce the
number of chips below 2k until B has reduced the number to 2k. 2

Let us next consider a similar game.

Start with N chips. First player can remove up to N − 1 chips.

In general, if the previous player took x chips, then the next player can take y ≤ 2x chips.

This game has been called Fibonacci Nim: Let F = {1, 2, 3, 5, 8, 13, . . . Fk, . . .} be the Fibonacci
sequence. Re-call that Fk+1 = Fk + Fk−1.

Lemma 3.

(a) (n, ∗) is an N-position if n /∈ F .

(b) (Fk, ∗) is a P-position for all k ≥ 1.

Proof We prove the lemma by induction on n. One can easily verify it for n ≤ 4 say.

(a) Suppose that n = Fk +x where 0 < x < Fk−1. Player A can employ a winning strategy for a pile
of size x whose final move involves y chips, where y < Fk−1/2; this leaves Player B with a pile of
size Fk−1 from which he/she cannot remove all chips. Player A can always arrange for y to satisfy
this property because when faced with a position (y′, z′), A will never choose w where y′ > w and
w ≥ 2(y′ − w) for otherwise A would lose when B took the remaining y′ − w chips.

(b) Assume that the starting position is (Fk+1, ∗). After the first move, the position will be (Fk−1 +
x, Fk − x), assuming that A chooses Fk − x chips.

(i) If x ≤ 0 then B can win by removing all Fk−1 + x ≤ 2(Fk − x) chips.

(ii) Assume x > 0. By induction there is a winning strategy for the second player after a move
from (Fk, ∗) to (x, Fk − x). B can play this strategy and get A to face the position (Fk−1, y) where
y ≤ Fk − x < 2Fk−1. By induction, A will lose from this position.

We should check that B will allow this to happen. But in following the winning strategy from (Fk, ∗)
to (x, Fk − x) to (0, y), B when facing (y′, z′) will never choose w where y′ > w ≥ y/3 for otherwise
B would lose when A took the remaining y′ − w chips. Thus A will never be able to reduce the
number of chips below Fk−1 until B has reduced the number to Fk−1. 2

The above two results are part of the following general theorem: There are 2 players A and B and
A goes first. We have a non-decreasing function f from N → N where N = {1, 2, . . .} is the set
of natural numbers. At the first move A takes any number less than h from the pile, where h is
the size of the initial pile. Then on a subsequent move, if a player takes n chips then the next
player is constrained to take at most f(n) chips. Thus the above considered the cases f(n) = n and
f(n) = 2n.

There is a set H = {H1 = 1 < H2 < . . .} of initial pile sizes for which the first player will lose,
assuming that the second player plays optimally. Also, if the initial pile size h /∈ H then the first
player has a winning strategy.
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Theorem 1. If f(Hj) ≥ Hj then Hj+1 = Hj + H` where

H` = min
i≤j

{Hi | f(Hi) ≥ Hj}.

Furthermore, if f(Hj) < Hj then the sequence of losing positions is finite and ends with Hj.

Proof Assume that f(Hj) ≥ Hj ; then H` = mini≤j{Hi | f(Hi) ≥ Hj} exists. For any losing
position Hi < H`, we have f(Hi) < Hj , so from an initial pile of size Hj +Hi, Player A can remove
Hi chips and win, since this leaves B with a pile of size Hj from which he/she cannot remove all
chips.

Now let x < H` be a winning position. Given a pile of size Hj + x, Player A can employ a winning
strategy for a pile of size x whose final move involves y chips, where f(y) < Hj ; this again leaves
Player B with a pile of size Hj from which he/she cannot remove all chips. Player A can always
arrange for y to satisfy this property because when faced with a position (y′, z′), A will never choose
w where y′ > w and f(w) ≥ y′ − w for otherwise A would lose when B took the remaining y′ − w
chips.

Finally, from a pile of size Hj + H`, if Player A takes at least H` chips then Player B takes the rest
and wins. If Player A takes less than H` then we fall into the preceding paragraph’s situation with
the roles reversed. This proves the first statement of the theorem.

If f(Hj) < Hj , suppose we had Hj+1 = Hj + x for some x > 0. As above, x cannot be any Hi,
since then Player A wins from Hj + Hi by removing Hi chips, because f(Hi) ≤ f(Hj) < Hj . Now
since x < Hj=1, x must be a winning position. Thus Player A can win from Hj + x by employing a
winning strategy for x whose final move is y, where f(y) < Hj . Thus Hj+1 is not a losing position
– contradiction, i.e. there is no Hj+1. 2
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