We now show how to compute the Sprague-Grundy numbering for a sum of games.

For binary integers $a = a_m a_{m-1} \cdots a_1 a_0$ and $b = b_m b_{m-1} \cdots b_1 b_0$ we define $a \oplus b = c_m c_{m-1} \cdots c_1 c_0$ by $c_i = 1$ if $a_i \neq b_i$ and $c_i = 0$ if $a_i = b_i$ for $i = 1, 2, \dots, m$.

So for example $11 \oplus 5 = 14$.

Theorem 1. If g_i is the Sprague-Grundy function for game i = 1, 2, ..., n then the Sprague-Grundy function g for the sum of the games is defined by

$$g(x) = g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n)$$

where $x = (x_1, x_2, ..., x_n)$.

Proof It is enough to show

1. If $x \in X$ is a sink of D then g(x) = 0.

- 2. If $x \in X$ and $g(x) = b > a \ge 0$ then there exists $x' \in \Gamma^+(x)$ such that g(x') = a.
- 3. If $x \in X$ and g(x) = b and $x' \in \Gamma^+(x)$ then $g(x') \neq g(x)$.

1. If $x = (x_1, x_2, \ldots, x_n)$ is a sink then x_i is a sink of D_i for $i = 1, 2, \ldots, n$. So

$$g(x) = g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n)$$

= 0 \oplus 0 \oplus \cdots \oplus \oplus 0
= 0.

2. Write $d = a \oplus b$. Then

$$a = d \oplus b$$

= $d \oplus g_1(x_1) \oplus g_2(x_2) \oplus \dots \oplus g_n(x_n).$ (1)

Now suppose that we can show there exists *i* such that $d \oplus g_i(x_i) < g_i(x_i)$. Then since $g_i(x_i) = mex(\Gamma_i^+(x_i))$ there must exist $x'_i \in \Gamma_i^+(x_i)$ such that $g_i(x'_i) = d \oplus g_i(x_i)$. Assume without loss of generality that i = 1. Then from (1) we have

$$a = g_1(x'_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n) = g(x'_1, x_2, \dots, x_n).$$

Furthermore, $(x'_1, x_2, \ldots, x_n) \in \Gamma^+(x)$ and so we will have verified 2.

Let us prove that such an *i* exists. Suppose that $2^{k-1} \leq d < 2^k$. Then *d* has a 1 in position *k* and no higher. Since $d_k = a_k \oplus b_k$ and a < b we must have $a_k = 0$ and $b_k = 1$. Thus there is at least one *i* such that $g_i(x_i)$ has a 1 in position *k*. But then $d \oplus g_i(x_i) < g_i(x_i)$ since *d* "destroys" the *k*th bit of $g_i(x_i)$ and does not change any higher bit.

3. Suppose without loss of generality that $g(x'_1, x_2, \ldots, x_n) = g(x_1, x_2, \ldots, x_n)$ where $x'_1 \in \Gamma^+(x_1)$. Then $g_1(x'_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n) = g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n)$ implies that $g_1(x'_1) = g_1(x_1)$, contradition.

If we apply this theorem to the game of Nim then if the position x consists of piles of x_i chips for i = 1, 2, ..., n then $g(x) = x_1 \oplus x_2 \oplus \cdots \oplus x_n$.