
The girth of a graph is the length of the shortest cycle in G. At first sight it seems that a graph
having large girth would necessarily be colourable with few colours i.e. there might exist a function
f such that if G has girth at least a then its chromatic number would be at most f(a). This is ruled
out by the following theorem of Erdős:

Theorem 1. Let a, b > 0 be positive integers. Then there exists a graph with girth g ≥ a and

chromatic number χ ≥ b.

Proof This follows from the following lemma:

Lemma 1. Let d be large enough so that d
3 log d ≥ b. Then there exists a graph G with n ≥ 100da

such that

(i) There are at most 2da cycles of length ≤ a.

(ii) There is no independent set of vertices of size ≥ 2 log d
d n.

From the lemma, let G′ be obtained from G by deleting one vertex from each cycle of length ≤ a.
Then G′ has girth ≥ a and

χ ≥
n − 2da

2 log d
d n

≥
d

3 log d
≥ b.
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Proof of Lemma: Let p = d/n and consider Gn,p.

Markov Inequality: If X is a non-negative random variable then

Pr(X ≥ t) ≤
E(X)

t
for any t > 0.

Proof:

E(X) = E(X | X ≥ t)Pr(X ≥ t) + E(X | X < t)Pr(X < t)

≥ E(X | X ≥ t)Pr(X ≥ t)

≥ tPr(X ≥ t).
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(i) Let X be the number of cycles of length at most a. Then
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Applying the Markov inequality we get

Pr(X ≥ 2da) ≤
E(X)

2da
≤

1

2
.
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(ii) Let k =
⌈

2 log d
d n

⌉

and Y be the number of independent sets of size k in Gn,p. Then

E(X) =
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k

)(
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d

n

)(k
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·
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)
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≤
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de

2 log d
· ed/2n · e−dk/2n

)k

≤
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2 log d
· (1 + o(1)) ·

1

d

)k

→ 0.

So

Pr(Gn,p satisfies (i) and (ii)) ≥
1

2
− o(1) > 0.
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