The girth of a graph is the length of the shortest cycle in G. At first sight it seems that a graph
having large girth would necessarily be colourable with few colours i.e. there might exist a function
f such that if G has girth at least a then its chromatic number would be at most f(a). This is ruled
out by the following theorem of Erdos:

Theorem 1. Let a,b > 0 be positive integers. Then there exists a graph with girth g > a and
chromatic number xy > b.

Proof This follows from the following lemma:

Lemma 1. Let d be large enough so that 3ngd >b. Then there exists a graph G with n > 100d®
such that

(i) There are at most 2d® cycles of length < a.

(ii) There is no independent set of vertices of size > %fdn.

From the lemma, let G’ be obtained from G by deleting one vertex from each cycle of length < a.
Then G’ has girth > a and
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Proof of Lemma: Let p = d/n and consider G, ;.

Markov Inequality: If X is a non-negative random variable then

E
Pr(X >t) < ¥ for any ¢ > 0.

Proof:

E(X) = EX|X>HPr(X >t)+E(X | X < t)Pr(X <)
E(X | X > t)Pr(X > 1)
tPr(X > t).

(i) Let X be the number of cycles of length at most a. Then
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Applying the Markov inequality we get

Pr(X > 2d%) <
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(ii) Let k = [%dgdn—‘ and Y be the number of independent sets of size k in G, ,. Then
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So

Pr(G,,, satisfies (i) and (ii)) > = — o(1) > 0.
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