
We now consider the connectivity of a random graph:

Theorem 1. Let ε > 0 be a constant.

(a) If p ≥ (1+ε) ln n
n then whp Gn,p is connected.

(b) If p ≤ (1−ε) ln n
n then whp Gn,p is noot connected.

Proof
(a) If Gn,p is not connected then there exists a component S of size 1 ≤ s ≤ n/2. Now if S is a
component then

(i) There is a spanning tree of S in Gn,p.

(ii) There are no S : S̄ edges.

Let ES be the event that S is a component. Then

Pr(Gn,p is not connected) = Pr
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Before we can proceed, we must estimate Pr((i)).

First Moment Method

Lemma 1. Let X be a random variable taking values in {0, 1, 2 . . . , }. Then

Pr(X 6= 0) ≤ E(X).

Proof Let pi = Pr(X = i) for i = 0, 1, 2 . . .. Then

Pr(X 6= 0) = p1 + p2 + · · · + pk + · · ·

E(X) = p1 + 2p2 + · · · + kpk + · · ·
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We apply this in estimating Pr((i)) as follows: Let X denote the number of spanning trees of S in
Gn,p. Then (i) occurs iff X 6= 0. To apply Lemma 1 we need to compute E(X). Let m = ss−2

and let T1, T2, . . . , Tm be an enumeration of the spanning trees of Ks. Let Xi = 1Ti⊆Gn,p
. Then

X = X1 + · · · + Xm and so

E(X) = E(X1 + · · · + Xm) = mPr(T1 ⊆ Gn,p) = ss−2ps−1.

Thus
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where x = e(1+ε) log n
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= O(n−ε).

We need to verify the inequality
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which was used in (2).

We do this by induction on s. It is trivial for s = 1, because
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after using (1 + s−1)s ≤ (e1/s)s = e. 2

(b) Now let p = (1−ε) log n
n and let X be the number of isolated vertices in Gn,p. Then

Pr(Gn,p is not connected) ≥ Pr(X 6= 0)

≥
E(X)2

E(X2)
. (3)
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We will verify (3) later.

E(X) = n(1 − p)n−1

≥ ne−(n−1)(p+p2)

since 1 − p = elog(1−p) and log(1 − p) = −p − p2

2 − · · · − pk

k ≥ −p − p2

≥ ne−(n−1)p2
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→ ∞.

Now let Xi = 1i is isolated so that X = X1 + · · · + Xn. Then
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It only remains to prove (3). Let Y = 1X 6=0 so that X = XY and Y 2 = Y . Now the Cauchy-
Schwartz inequality says

E(XY )2 ≤ E(X2)E(Y 2).

Now use E(XY ) = E(X) and E(Y 2) = E(Y ) = Pr(X 6= 0).

We can prove the Cauchy-Schwartz inequality as follows: Observe that the quadratic E((X+λY )2 =
E(X2) + 2E(XY )λ + E(Y 2) ≥ 0 for all λ. This implies the inequality! 2
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