We now consider the connectivity of a random graph:

Theorem 1. Let € > 0 be a constant.

(a) If p > W then whp G,, ,, is connected.

(b) If p < W then whp G, ,, is noot connected.

Proof
(a) If G, is not connected then there exists a component S of size 1 < s < n/2. Now if § is a
component then

(i) There is a spanning tree of S in G, .

(ii) There are no S : S edges.

Let £s be the event that S is a component. Then
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Before we can proceed, we must estimate Pr((i)).

First Moment Method

Lemma 1. Let X be a random variable taking values in {0,1,2...,}. Then

Pr(X #0) < E(X).

Proof Let p; = Pr(X =4) for i =0,1,2.... Then

Pr(X #0) = pi+pat - +pp+-
E(X) = pi+2p+--+kpp+--



We apply this in estimating Pr((i)) as follows: Let X denote the number of spanning trees of S in

Gr,p- Then (i) occurs iff X # 0. To apply Lemma 1 we need to compute E(X). Let m = s

5—2

and let T1,T5, ..., Ty, be an enumeration of the spanning trees of K,. Let X; = 17,cg, ,- Then

X=X+ ---+X,, and so

E(X) = E(Xl + -+ Xm) = mPr(T1 g Gnm) = ssizpsil.

Thus
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We need to verify the inequality

which was used in (2).
We do this by induction on s. It is trivial for s = 1, because (711) =n < ==

So assume it is true for s > 1. Then
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after using (1 +s71)° < (e!/*)® =e.
(b) Now let p = (17@% and let X be the number of isolated vertices in Gy, ,. Then

Pr(G, p is not connected) > Pr(X #0)
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We will verify (3) later.
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Now let X; = 1, is isolated SO that X = X1 +---+ X,,. Then
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It only remains to prove (3).
Schwartz inequality says

Let Y =
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1x.0 so that X = XY and Y2 =Y. Now the Cauchy-

E(XY)? < E(XY)E(Y?).
Now use E(XY) = E(X) and E(Y?) = E(Y) = Pr(X #0).

We can prove the Cauchy-Schwartz inequality as follows: Observe that the quadratic E((X +\Y)? =
E(X?) 4+ 2E(XY)X + E(Y?) > 0 for all A. This implies the inequality! a



